Light-driven Oxidative Demethylation Reaction Catalyzed by a Rieske-type Non-heme Iron Enzyme Stc2.
N-demethylation
O2 delivery
Rieske-type oxygenase
eosin Y and sulfite
flow-chemistry
photo-biocatalysis
Journal
ACS catalysis
ISSN: 2155-5435
Titre abrégé: ACS Catal
Pays: United States
ID NLM: 101562209
Informations de publication
Date de publication:
02 Dec 2022
02 Dec 2022
Historique:
medline:
12
5
2023
pubmed:
12
5
2023
entrez:
11
5
2023
Statut:
ppublish
Résumé
Rieske-type non-heme iron oxygenases/oxidases catalyze a wide range of transformations. Their applications in bioremediation or biocatalysis face two key barriers: the need of expensive NAD(P)H as a reductant and a proper reductase to mediate the electron transfer from NAD(P)H to the oxygenases. To bypass the need of both the reductase and NAD(P)H, using Rieske-type oxygenase (Stc2) catalyzed oxidative demethylation as the model system, we report Stc2 photocatalysis using eosin Y/sulfite as the photosensitizer/sacrificial reagent pair. In a flow-chemistry setting to separate the photo-reduction half-reaction and oxidation half-reaction, Stc2 photo-biocatalysis outperforms the Stc2-NAD(P)H-reductase (GbcB) system. In addition, in a few other selected Rieske enzymes (NdmA, CntA, and GbcA), and a flavin-dependent enzyme (iodotyrosine deiodinase, IYD), the eosin Y/sodium sulfite photo-reduction pair could also serve as the NAD(P)H-reductase surrogate to support catalysis, which implies the potential applicability of this photo-reduction system to other redox enzymes.
Identifiants
pubmed: 37168530
doi: 10.1021/acscatal.2c04232
pmc: PMC10168674
mid: NIHMS1890024
doi:
Types de publication
Journal Article
Langues
eng
Pagination
14559-14570Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM140040
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM136294
Pays : United States
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Inorg Chem. 2021 Nov 1;60(21):15835-15845
pubmed: 34014639
Chembiochem. 2021 Mar 2;22(5):790-806
pubmed: 32961020
Plant J. 2014 Nov;80(3):385-95
pubmed: 25139498
J Am Chem Soc. 2009 Jun 17;131(23):7964-5
pubmed: 19459625
J Am Chem Soc. 2018 Sep 19;140(37):11863-11869
pubmed: 30192526
J Am Chem Soc. 2021 Nov 3;143(43):18159-18171
pubmed: 34668697
J Am Chem Soc. 2012 Feb 8;134(5):2823-34
pubmed: 22224443
Angew Chem Int Ed Engl. 2017 Nov 20;56(47):15146-15149
pubmed: 28945948
Biochem Biophys Res Commun. 2005 Dec 9;338(1):175-90
pubmed: 16168954
J Biol Chem. 2020 Sep 11;295(37):13065-13078
pubmed: 32694223
Anal Biochem. 1983 Jun;131(2):373-8
pubmed: 6614472
Vopr Virusol. 1978 Jan-Feb;(1):47-51
pubmed: 645056
Angew Chem Int Ed Engl. 2020 Mar 2;59(10):3982-3987
pubmed: 31850622
Biochemistry. 2006 Aug 29;45(34):10208-16
pubmed: 16922496
J Am Chem Soc. 2019 Apr 10;141(14):5753-5765
pubmed: 30879301
J Mol Biol. 2009 Sep 18;392(2):498-510
pubmed: 19616011
J Biol Chem. 2005 Nov 4;280(44):36719-27
pubmed: 16150698
Angew Chem Int Ed Engl. 2015 Jan 12;54(3):969-73
pubmed: 25430544
J Mol Biol. 2019 Sep 6;431(19):3647-3661
pubmed: 31412262
J Am Chem Soc. 2010 Dec 29;132(51):18168-76
pubmed: 21133361
Nat Commun. 2020 Jun 12;11(1):2991
pubmed: 32532989
J Bacteriol. 2012 Apr;194(8):2041-9
pubmed: 22328667
BMC Biochem. 2008 Apr 03;9:11
pubmed: 18387195
ACS Catal. 2013 Oct 4;3(10):
pubmed: 24244885
Biochemistry. 2015 Jul 28;54(29):4487-94
pubmed: 26151430
Methods Enzymol. 2015;563:171-208
pubmed: 26478486
J Am Chem Soc. 2010 Apr 28;132(16):5711-24
pubmed: 20356038
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2121426119
pubmed: 35312352
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4268-73
pubmed: 24591617
Nat Prod Rep. 2018 Jul 18;35(7):622-632
pubmed: 29651484
ChemSusChem. 2017 Mar 9;10(5):894-902
pubmed: 27976835
J Am Chem Soc. 2014 Jun 4;136(22):7981-92
pubmed: 24828196
Angew Chem Int Ed Engl. 2018 Jul 2;57(27):7958-7985
pubmed: 29194901
Gene. 2000 Feb 22;244(1-2):151-61
pubmed: 10689197
Nat Chem. 2011 May;3(5):388-92
pubmed: 21505498
Curr Opin Biotechnol. 2000 Jun;11(3):236-43
pubmed: 10851146
Enzymes. 2020;47:365-397
pubmed: 32951828
ACS Cent Sci. 2021 Jul 28;7(7):1105-1116
pubmed: 34345663
J Biol Chem. 2014 Sep 12;289(37):25523-36
pubmed: 25049233
Nat Chem Biol. 2008 Mar;4(3):186-93
pubmed: 18277980
Angew Chem Int Ed Engl. 2019 Aug 19;58(34):11647-11651
pubmed: 31231913
Biochemistry. 2019 Dec 24;58(51):5135-5150
pubmed: 31750652
Angew Chem Int Ed Engl. 2021 Feb 23;60(9):4529-4534
pubmed: 33180358
Curr Opin Chem Biol. 2002 Apr;6(2):130-5
pubmed: 12038995
J Am Chem Soc. 2009 Jul 29;131(29):9931-3
pubmed: 19583210
Chem Commun (Camb). 2018 Jun 28;54(53):7281-7289
pubmed: 29714371
Arch Biochem Biophys. 2017 Oct 15;632:77-87
pubmed: 28774660
Acta Crystallogr D Biol Crystallogr. 2009 Jan;65(Pt 1):24-33
pubmed: 19153463
J Am Chem Soc. 2004 Aug 25;126(33):10306-12
pubmed: 15315444
Angew Chem Int Ed Engl. 2021 Jan 4;60(1):88-119
pubmed: 32558088
Chem Asian J. 2020 Dec 14;15(24):4256-4270
pubmed: 33164351
J Biol Chem. 2005 Jul 1;280(26):24759-67
pubmed: 15855162
FEBS J. 2012 May;279(9):1563-75
pubmed: 22251775
Appl Environ Microbiol. 2018 Jun 18;84(13):
pubmed: 29703733
Plant Cell Physiol. 2006 Dec;47(12):1622-9
pubmed: 17071624
Biochemistry. 2009 Nov 10;48(44):10483-5
pubmed: 19821611