High-Performance Statistical Computing in the Computing Environments of the 2020s.
ADMM
Cox regression
High-performance statistical computing
MM algorithms
PDHG
cloud computing
deep learning
graphics processing units (GPUs)
Journal
Statistical science : a review journal of the Institute of Mathematical Statistics
ISSN: 0883-4237
Titre abrégé: Stat Sci
Pays: United States
ID NLM: 100962994
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
medline:
12
5
2023
pubmed:
12
5
2023
entrez:
11
5
2023
Statut:
ppublish
Résumé
Technological advances in the past decade, hardware and software alike, have made access to high-performance computing (HPC) easier than ever. We review these advances from a statistical computing perspective. Cloud computing makes access to supercomputers affordable. Deep learning software libraries make programming statistical algorithms easy and enable users to write code once and run it anywhere-from a laptop to a workstation with multiple graphics processing units (GPUs) or a supercomputer in a cloud. Highlighting how these developments benefit statisticians, we review recent optimization algorithms that are useful for high-dimensional models and can harness the power of HPC. Code snippets are provided to demonstrate the ease of programming. We also provide an easy-to-use distributed matrix data structure suitable for HPC. Employing this data structure, we illustrate various statistical applications including large-scale positron emission tomography and
Identifiants
pubmed: 37168541
doi: 10.1214/21-sts835
pmc: PMC10168006
mid: NIHMS1884249
doi:
Types de publication
Journal Article
Langues
eng
Pagination
494-518Subventions
Organisme : NICHD NIH HHS
ID : R25 HD108136
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG006139
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21 HL150374
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM141798
Pays : United States
Organisme : NIDDK NIH HHS
ID : K01 DK106116
Pays : United States
Références
Nature. 1999 Oct 21;401(6755):788-91
pubmed: 10548103
Genome Biol. 2016 Jun 06;17(1):122
pubmed: 27268795
Science. 2011 Jan 28;331(6016):406-7
pubmed: 21273473
Nat Genet. 2010 Feb;42(2):105-16
pubmed: 20081858
J Mach Learn Res. 2019 Apr;20:
pubmed: 31649491
PLoS Biol. 2011 Jul;9(7):e1001091
pubmed: 21750661
J Comput Graph Stat. 2010 Jun 1;19(2):419-438
pubmed: 20877443
Bioinformatics. 2010 Jan 1;26(1):134-5
pubmed: 19850754
Entropy (Basel). 2019 Jun 26;21(7):
pubmed: 33267341
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
J Invest Dermatol. 2009 Feb;129(2):392-405
pubmed: 18650849
Science. 2007 Jun 1;316(5829):1341-5
pubmed: 17463248
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Phys Med Biol. 2018 Feb 06;63(3):035042
pubmed: 29327692
Ann Stat. 2005;33(4):1617-1642
pubmed: 19458786
Stat Sci. 2022 Nov;37(4):494-518
pubmed: 37168541
Nat Genet. 2018 Nov;50(11):1505-1513
pubmed: 30297969
Nucleic Acids Res. 2009 Jan;37(1):1-13
pubmed: 19033363
Neural Comput. 2007 Oct;19(10):2756-79
pubmed: 17716011
Nat Genet. 2010 Jul;42(7):579-89
pubmed: 20581827
Nature. 2007 Jun 7;447(7145):661-78
pubmed: 17554300
Biostatistics. 2014 Apr;15(2):207-21
pubmed: 24096388
ACM Trans Model Comput Simul. 2013 Jan;23(1):
pubmed: 25328363
Math Program. 2014 Aug 1;146:409-436
pubmed: 25392563
PLoS Med. 2015 Mar 31;12(3):e1001779
pubmed: 25826379
Stat Sci. 2010 Aug 1;25(3):311-324
pubmed: 21847315
PLoS Genet. 2014 Aug 07;10(8):e1004517
pubmed: 25102180