High-Performance Statistical Computing in the Computing Environments of the 2020s.

ADMM Cox regression High-performance statistical computing MM algorithms PDHG cloud computing deep learning graphics processing units (GPUs)

Journal

Statistical science : a review journal of the Institute of Mathematical Statistics
ISSN: 0883-4237
Titre abrégé: Stat Sci
Pays: United States
ID NLM: 100962994

Informations de publication

Date de publication:
Nov 2022
Historique:
medline: 12 5 2023
pubmed: 12 5 2023
entrez: 11 5 2023
Statut: ppublish

Résumé

Technological advances in the past decade, hardware and software alike, have made access to high-performance computing (HPC) easier than ever. We review these advances from a statistical computing perspective. Cloud computing makes access to supercomputers affordable. Deep learning software libraries make programming statistical algorithms easy and enable users to write code once and run it anywhere-from a laptop to a workstation with multiple graphics processing units (GPUs) or a supercomputer in a cloud. Highlighting how these developments benefit statisticians, we review recent optimization algorithms that are useful for high-dimensional models and can harness the power of HPC. Code snippets are provided to demonstrate the ease of programming. We also provide an easy-to-use distributed matrix data structure suitable for HPC. Employing this data structure, we illustrate various statistical applications including large-scale positron emission tomography and

Identifiants

pubmed: 37168541
doi: 10.1214/21-sts835
pmc: PMC10168006
mid: NIHMS1884249
doi:

Types de publication

Journal Article

Langues

eng

Pagination

494-518

Subventions

Organisme : NICHD NIH HHS
ID : R25 HD108136
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG006139
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21 HL150374
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM141798
Pays : United States
Organisme : NIDDK NIH HHS
ID : K01 DK106116
Pays : United States

Références

Nature. 1999 Oct 21;401(6755):788-91
pubmed: 10548103
Genome Biol. 2016 Jun 06;17(1):122
pubmed: 27268795
Science. 2011 Jan 28;331(6016):406-7
pubmed: 21273473
Nat Genet. 2010 Feb;42(2):105-16
pubmed: 20081858
J Mach Learn Res. 2019 Apr;20:
pubmed: 31649491
PLoS Biol. 2011 Jul;9(7):e1001091
pubmed: 21750661
J Comput Graph Stat. 2010 Jun 1;19(2):419-438
pubmed: 20877443
Bioinformatics. 2010 Jan 1;26(1):134-5
pubmed: 19850754
Entropy (Basel). 2019 Jun 26;21(7):
pubmed: 33267341
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
J Invest Dermatol. 2009 Feb;129(2):392-405
pubmed: 18650849
Science. 2007 Jun 1;316(5829):1341-5
pubmed: 17463248
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Phys Med Biol. 2018 Feb 06;63(3):035042
pubmed: 29327692
Ann Stat. 2005;33(4):1617-1642
pubmed: 19458786
Stat Sci. 2022 Nov;37(4):494-518
pubmed: 37168541
Nat Genet. 2018 Nov;50(11):1505-1513
pubmed: 30297969
Nucleic Acids Res. 2009 Jan;37(1):1-13
pubmed: 19033363
Neural Comput. 2007 Oct;19(10):2756-79
pubmed: 17716011
Nat Genet. 2010 Jul;42(7):579-89
pubmed: 20581827
Nature. 2007 Jun 7;447(7145):661-78
pubmed: 17554300
Biostatistics. 2014 Apr;15(2):207-21
pubmed: 24096388
ACM Trans Model Comput Simul. 2013 Jan;23(1):
pubmed: 25328363
Math Program. 2014 Aug 1;146:409-436
pubmed: 25392563
PLoS Med. 2015 Mar 31;12(3):e1001779
pubmed: 25826379
Stat Sci. 2010 Aug 1;25(3):311-324
pubmed: 21847315
PLoS Genet. 2014 Aug 07;10(8):e1004517
pubmed: 25102180

Auteurs

Seyoon Ko (S)

Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California 90095, USA.

Hua Zhou (H)

Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California 90095, USA.

Jin J Zhou (JJ)

Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California 90095, USA, and Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724, USA.

Joong-Ho Won (JH)

Department of Statistics, Seoul National University, Seoul, Korea.

Classifications MeSH