Non-Abelian braiding of graph vertices in a superconducting processor.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 03 10 2022
accepted: 14 03 2023
medline: 9 6 2023
pubmed: 12 5 2023
entrez: 11 5 2023
Statut: ppublish

Résumé

Indistinguishability of particles is a fundamental principle of quantum mechanics

Identifiants

pubmed: 37169834
doi: 10.1038/s41586-023-05954-4
pii: 10.1038/s41586-023-05954-4
pmc: PMC10247379
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

264-269

Investigateurs

T I Andersen (TI)
Y D Lensky (YD)
K Kechedzhi (K)
I K Drozdov (IK)
A Bengtsson (A)
S Hong (S)
A Morvan (A)
X Mi (X)
A Opremcak (A)
R Acharya (R)
R Allen (R)
M Ansmann (M)
F Arute (F)
K Arya (K)
A Asfaw (A)
J Atalaya (J)
R Babbush (R)
D Bacon (D)
J C Bardin (JC)
G Bortoli (G)
A Bourassa (A)
J Bovaird (J)
L Brill (L)
M Broughton (M)
B B Buckley (BB)
D A Buell (DA)
T Burger (T)
B Burkett (B)
N Bushnell (N)
Z Chen (Z)
B Chiaro (B)
D Chik (D)
C Chou (C)
J Cogan (J)
R Collins (R)
P Conner (P)
W Courtney (W)
A L Crook (AL)
B Curtin (B)
D M Debroy (DM)
A Del Toro Barba (A)
S Demura (S)
A Dunsworth (A)
D Eppens (D)
C Erickson (C)
L Faoro (L)
E Farhi (E)
R Fatemi (R)
V S Ferreira (VS)
L F Burgos (LF)
E Forati (E)
A G Fowler (AG)
B Foxen (B)
W Giang (W)
C Gidney (C)
D Gilboa (D)
M Giustina (M)
R Gosula (R)
A G Dau (AG)
J A Gross (JA)
S Habegger (S)
M C Hamilton (MC)
M Hansen (M)
M P Harrigan (MP)
S D Harrington (SD)
P Heu (P)
J Hilton (J)
M R Hoffmann (MR)
T Huang (T)
A Huff (A)
W J Huggins (WJ)
L B Ioffe (LB)
S V Isakov (SV)
J Iveland (J)
E Jeffrey (E)
Z Jiang (Z)
C Jones (C)
P Juhas (P)
D Kafri (D)
T Khattar (T)
M Khezri (M)
M Kieferová (M)
S Kim (S)
A Kitaev (A)
P V Klimov (PV)
A R Klots (AR)
A N Korotkov (AN)
F Kostritsa (F)
J M Kreikebaum (JM)
D Landhuis (D)
P Laptev (P)
K-M Lau (KM)
L Laws (L)
J Lee (J)
K W Lee (KW)
B J Lester (BJ)
A T Lill (AT)
W Liu (W)
A Locharla (A)
E Lucero (E)
F D Malone (FD)
O Martin (O)
J R McClean (JR)
T McCourt (T)
M McEwen (M)
K C Miao (KC)
A Mieszala (A)
M Mohseni (M)
S Montazeri (S)
E Mount (E)
R Movassagh (R)
W Mruczkiewicz (W)
O Naaman (O)
M Neeley (M)
C Neill (C)
A Nersisyan (A)
M Newman (M)
J H Ng (JH)
A Nguyen (A)
M Nguyen (M)
M Y Niu (MY)
T E O'Brien (TE)
S Omonije (S)
A Petukhov (A)
R Potter (R)
L P Pryadko (LP)
C Quintana (C)
C Rocque (C)
N C Rubin (NC)
N Saei (N)
D Sank (D)
K Sankaragomathi (K)
K J Satzinger (KJ)
H F Schurkus (HF)
C Schuster (C)
M J Shearn (MJ)
A Shorter (A)
N Shutty (N)
V Shvarts (V)
J Skruzny (J)
W C Smith (WC)
R Somma (R)
G Sterling (G)
D Strain (D)
M Szalay (M)
A Torres (A)
G Vidal (G)
B Villalonga (B)
C V Heidweiller (CV)
T White (T)
B W K Woo (BWK)
C Xing (C)
Z J Yao (ZJ)
P Yeh (P)
J Yoo (J)
G Young (G)
A Zalcman (A)
Y Zhang (Y)
N Zhu (N)
N Zobrist (N)
H Neven (H)
S Boixo (S)
A Megrant (A)
J Kelly (J)
Y Chen (Y)
V Smelyanskiy (V)
E-A Kim (EA)
I Aleiner (I)
P Roushan (P)

Informations de copyright

© 2023. The Author(s).

Références

Sakurai, J. J. Modern Quantum Mechanics (Addison-Wesley, 1993).
Leinaas, J. & Myrheim, J. On the theory of identical particles. Nuovo Cim. B. 37, 1–23 (1977).
doi: 10.1007/BF02727953
Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).
doi: 10.1103/PhysRevLett.49.957
Wilczek, F. Fractional Statistics and Anyon Superconductivity (World Scientific, 1990).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
doi: 10.1103/RevModPhys.80.1083
Camino, F. E., Zhou, W. & Goldman, V. J. e/3 Laughlin quasiparticle primary-filling ν = 1/3 interferometer. Phys. Rev. Lett. 98, 076805 (2007).
doi: 10.1103/PhysRevLett.98.076805 pubmed: 17359048
Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).
doi: 10.1126/science.aaz5601 pubmed: 32273465
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931—936 (2020).
doi: 10.1038/s41567-020-1019-1
Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
doi: 10.1016/j.aop.2005.10.005
Bombin, H. Topological order with a twist: Ising anyons from an Abelian model. Phys. Rev. Lett. 105, 030403 (2010).
doi: 10.1103/PhysRevLett.105.030403 pubmed: 20867748
Hormozi, L., Zikos, G., Bonesteel, N. E. & Simon, S. H. Topological quantum compiling. Phys. Rev. B 75, 165310 (2007).
doi: 10.1103/PhysRevB.75.165310
You, Y.-Z. & Wen, X.-G. Projective non-abelian statistics of dislocation defects in a [Formula: see text] rotor model. Phys. Rev. B 86, 161107 (2012).
Barkeshli, M., Jian, C.-M. & Qi, X.-L. Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130 (2013).
doi: 10.1103/PhysRevB.87.045130
Barkeshli, M. & Qi, X.-L. Topological nematic states and non-Abelian lattice dislocations. Phys. Rev. X 2, 031013 (2012).
von Keyserlingk, C. W., Burnell, F. J. & Simon, S. H. Three-dimensional topological lattice models with surface anyons. Phys. Rev. B 87, 045107 (2013).
doi: 10.1103/PhysRevB.87.045107
Teo, J. C., Roy, A. & Chen, X. Unconventional fusion and braiding of topological defects in a lattice model. Phys. Rev. B 90, 115118 (2014).
doi: 10.1103/PhysRevB.90.115118
Zheng, H., Dua, A. & Jiang, L. Demonstrating non-Abelian statistics of majorana fermions using twist defects. Phys. Rev. B 92, 245139 (2015).
doi: 10.1103/PhysRevB.92.245139
Teo, J. C., Hughes, T. L. & Fradkin, E. Theory of twist liquids: gauging an anyonic symmetry. Ann. Phys. 360, 349–445 (2015).
doi: 10.1016/j.aop.2015.05.012
Brown, B. J., Laubscher, K., Kesselring, M. S. & Wootton, J. R. Poking holes and cutting corners to achieve clifford gates with the surface code. Phys. Rev. X 7, 021029 (2017).
Zhu, G., Hafezi, M. & Barkeshli, M. Quantum origami: transversal gates for quantum computation and measurement of topological order. Phys. Rev. Res. 2, 013285 (2020).
doi: 10.1103/PhysRevResearch.2.013285
Benhemou, A., Pachos, J. K. & Browne, D. E. Non-abelian statistics with mixed-boundary punctures on the toric code. Phys. Rev. A 105, 042417 (2022).
doi: 10.1103/PhysRevA.105.042417
Tantivasadakarn, N., Verresen, R. & Vishwanath, A. The shortest route to non-Abelian topological order on a quantum processor. Preprint at https://arxiv.org/abs/2209.03964 (2022).
Lensky, Y. D., Kechedzhi, K., Aleiner, I. & Kim, E.-A. Graph gauge theory of mobile non-Abelian anyons in a qubit stabilizer code. Preprint at https://arxiv.org/abs/2210.09282 (2022).
Stern, A. Anyons and the quantum Hall effect: a pedagogical review. Ann. Phys. 323, 204–249 (2008).
Harle, N., Shtanko, O. & Movassagh, R. Observing and braiding topological Majorana modes on programmable quantum simulators. Nat. Commun. 14, 2286 (2023)
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
doi: 10.1016/S0003-4916(02)00018-0
Freedman, M. H. P/np, and the quantum field computer. Proc. Natl Acad. Sci. USA 95, 98–101 (1998).
doi: 10.1073/pnas.95.1.98 pubmed: 9419335 pmcid: 18139
Pachos, J. K. Introduction to Topological Quantum Computation (Cambridge Univ. Press, 2012).
Stern, A. & Lindner, N. Topological quantum computation—from basic concepts to first experiments. Science 339, 1179–1184 (2013).
doi: 10.1126/science.1231473 pubmed: 23471401
Field, B. & Simula, T. Introduction to topological quantum computation with non-Abelian anyons. Quantum Sci. Technol. 3, 045004 (2018).
doi: 10.1088/2058-9565/aacad2
Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).
doi: 10.1016/0550-3213(91)90407-O
Willett, R. L., Pfeiffer, L. N. & West, K. W. Alternation and interchange of e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles. Phys. Rev. B 82, 205301 (2010).
doi: 10.1103/PhysRevB.82.205301
Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000).
doi: 10.1103/PhysRevB.61.10267
Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in P-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).
doi: 10.1103/PhysRevLett.86.268 pubmed: 11177808
Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
doi: 10.1103/PhysRevLett.105.077001 pubmed: 20868069
Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
doi: 10.1103/PhysRevLett.105.177002 pubmed: 21231073
Mourik, V. et al. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).
doi: 10.1126/science.1222360 pubmed: 22499805
Nadj-Perge, S. et al. Observation of majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).
doi: 10.1126/science.1259327 pubmed: 25278507
Banerjee, M. et al. Observation of half-integer thermal hall conductance. Nature 559, 205–210 (2018).
doi: 10.1038/s41586-018-0184-1 pubmed: 29867160
Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).
doi: 10.1038/s41586-018-0274-0 pubmed: 29995863
Bonderson, P., Kitaev, A. & Shtengel, K. Detecting non-Abelian statistics in the ν = 5/2 fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006).
doi: 10.1103/PhysRevLett.96.016803 pubmed: 16486496
Gottesman, D. Stabilizer Codes and Quantum Error Correction (California Institute of Technology, 1997).
Satzinger, K. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).
doi: 10.1126/science.abi8378 pubmed: 34855491
Wen, X.-G. Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 (2003).
doi: 10.1103/PhysRevLett.90.016803 pubmed: 12570641
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
doi: 10.1038/s41586-019-1666-5 pubmed: 31645734
Isakov, S. V. et al. Simulations of quantum circuits with approximate noise using qsim and cirq. Preprint at https://arxiv.org/abs/2111.02396 (2021).
Barkeshli, M., Bonderson, P., Cheng, M. & Wang, Z. Symmetry fractionalization, defects, and gauging of topological phases. Phys. Rev. B 100, 115147 (2019).
doi: 10.1103/PhysRevB.100.115147

Auteurs

Classifications MeSH