Non-Abelian braiding of graph vertices in a superconducting processor.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
03
10
2022
accepted:
14
03
2023
medline:
9
6
2023
pubmed:
12
5
2023
entrez:
11
5
2023
Statut:
ppublish
Résumé
Indistinguishability of particles is a fundamental principle of quantum mechanics
Identifiants
pubmed: 37169834
doi: 10.1038/s41586-023-05954-4
pii: 10.1038/s41586-023-05954-4
pmc: PMC10247379
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
264-269Investigateurs
T I Andersen
(TI)
Y D Lensky
(YD)
K Kechedzhi
(K)
I K Drozdov
(IK)
A Bengtsson
(A)
S Hong
(S)
A Morvan
(A)
X Mi
(X)
A Opremcak
(A)
R Acharya
(R)
R Allen
(R)
M Ansmann
(M)
F Arute
(F)
K Arya
(K)
A Asfaw
(A)
J Atalaya
(J)
R Babbush
(R)
D Bacon
(D)
J C Bardin
(JC)
G Bortoli
(G)
A Bourassa
(A)
J Bovaird
(J)
L Brill
(L)
M Broughton
(M)
B B Buckley
(BB)
D A Buell
(DA)
T Burger
(T)
B Burkett
(B)
N Bushnell
(N)
Z Chen
(Z)
B Chiaro
(B)
D Chik
(D)
C Chou
(C)
J Cogan
(J)
R Collins
(R)
P Conner
(P)
W Courtney
(W)
A L Crook
(AL)
B Curtin
(B)
D M Debroy
(DM)
A Del Toro Barba
(A)
S Demura
(S)
A Dunsworth
(A)
D Eppens
(D)
C Erickson
(C)
L Faoro
(L)
E Farhi
(E)
R Fatemi
(R)
V S Ferreira
(VS)
L F Burgos
(LF)
E Forati
(E)
A G Fowler
(AG)
B Foxen
(B)
W Giang
(W)
C Gidney
(C)
D Gilboa
(D)
M Giustina
(M)
R Gosula
(R)
A G Dau
(AG)
J A Gross
(JA)
S Habegger
(S)
M C Hamilton
(MC)
M Hansen
(M)
M P Harrigan
(MP)
S D Harrington
(SD)
P Heu
(P)
J Hilton
(J)
M R Hoffmann
(MR)
T Huang
(T)
A Huff
(A)
W J Huggins
(WJ)
L B Ioffe
(LB)
S V Isakov
(SV)
J Iveland
(J)
E Jeffrey
(E)
Z Jiang
(Z)
C Jones
(C)
P Juhas
(P)
D Kafri
(D)
T Khattar
(T)
M Khezri
(M)
M Kieferová
(M)
S Kim
(S)
A Kitaev
(A)
P V Klimov
(PV)
A R Klots
(AR)
A N Korotkov
(AN)
F Kostritsa
(F)
J M Kreikebaum
(JM)
D Landhuis
(D)
P Laptev
(P)
K-M Lau
(KM)
L Laws
(L)
J Lee
(J)
K W Lee
(KW)
B J Lester
(BJ)
A T Lill
(AT)
W Liu
(W)
A Locharla
(A)
E Lucero
(E)
F D Malone
(FD)
O Martin
(O)
J R McClean
(JR)
T McCourt
(T)
M McEwen
(M)
K C Miao
(KC)
A Mieszala
(A)
M Mohseni
(M)
S Montazeri
(S)
E Mount
(E)
R Movassagh
(R)
W Mruczkiewicz
(W)
O Naaman
(O)
M Neeley
(M)
C Neill
(C)
A Nersisyan
(A)
M Newman
(M)
J H Ng
(JH)
A Nguyen
(A)
M Nguyen
(M)
M Y Niu
(MY)
T E O'Brien
(TE)
S Omonije
(S)
A Petukhov
(A)
R Potter
(R)
L P Pryadko
(LP)
C Quintana
(C)
C Rocque
(C)
N C Rubin
(NC)
N Saei
(N)
D Sank
(D)
K Sankaragomathi
(K)
K J Satzinger
(KJ)
H F Schurkus
(HF)
C Schuster
(C)
M J Shearn
(MJ)
A Shorter
(A)
N Shutty
(N)
V Shvarts
(V)
J Skruzny
(J)
W C Smith
(WC)
R Somma
(R)
G Sterling
(G)
D Strain
(D)
M Szalay
(M)
A Torres
(A)
G Vidal
(G)
B Villalonga
(B)
C V Heidweiller
(CV)
T White
(T)
B W K Woo
(BWK)
C Xing
(C)
Z J Yao
(ZJ)
P Yeh
(P)
J Yoo
(J)
G Young
(G)
A Zalcman
(A)
Y Zhang
(Y)
N Zhu
(N)
N Zobrist
(N)
H Neven
(H)
S Boixo
(S)
A Megrant
(A)
J Kelly
(J)
Y Chen
(Y)
V Smelyanskiy
(V)
E-A Kim
(EA)
I Aleiner
(I)
P Roushan
(P)
Informations de copyright
© 2023. The Author(s).
Références
Sakurai, J. J. Modern Quantum Mechanics (Addison-Wesley, 1993).
Leinaas, J. & Myrheim, J. On the theory of identical particles. Nuovo Cim. B. 37, 1–23 (1977).
doi: 10.1007/BF02727953
Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).
doi: 10.1103/PhysRevLett.49.957
Wilczek, F. Fractional Statistics and Anyon Superconductivity (World Scientific, 1990).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
doi: 10.1103/RevModPhys.80.1083
Camino, F. E., Zhou, W. & Goldman, V. J. e/3 Laughlin quasiparticle primary-filling ν = 1/3 interferometer. Phys. Rev. Lett. 98, 076805 (2007).
doi: 10.1103/PhysRevLett.98.076805
pubmed: 17359048
Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).
doi: 10.1126/science.aaz5601
pubmed: 32273465
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931—936 (2020).
doi: 10.1038/s41567-020-1019-1
Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
doi: 10.1016/j.aop.2005.10.005
Bombin, H. Topological order with a twist: Ising anyons from an Abelian model. Phys. Rev. Lett. 105, 030403 (2010).
doi: 10.1103/PhysRevLett.105.030403
pubmed: 20867748
Hormozi, L., Zikos, G., Bonesteel, N. E. & Simon, S. H. Topological quantum compiling. Phys. Rev. B 75, 165310 (2007).
doi: 10.1103/PhysRevB.75.165310
You, Y.-Z. & Wen, X.-G. Projective non-abelian statistics of dislocation defects in a [Formula: see text] rotor model. Phys. Rev. B 86, 161107 (2012).
Barkeshli, M., Jian, C.-M. & Qi, X.-L. Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130 (2013).
doi: 10.1103/PhysRevB.87.045130
Barkeshli, M. & Qi, X.-L. Topological nematic states and non-Abelian lattice dislocations. Phys. Rev. X 2, 031013 (2012).
von Keyserlingk, C. W., Burnell, F. J. & Simon, S. H. Three-dimensional topological lattice models with surface anyons. Phys. Rev. B 87, 045107 (2013).
doi: 10.1103/PhysRevB.87.045107
Teo, J. C., Roy, A. & Chen, X. Unconventional fusion and braiding of topological defects in a lattice model. Phys. Rev. B 90, 115118 (2014).
doi: 10.1103/PhysRevB.90.115118
Zheng, H., Dua, A. & Jiang, L. Demonstrating non-Abelian statistics of majorana fermions using twist defects. Phys. Rev. B 92, 245139 (2015).
doi: 10.1103/PhysRevB.92.245139
Teo, J. C., Hughes, T. L. & Fradkin, E. Theory of twist liquids: gauging an anyonic symmetry. Ann. Phys. 360, 349–445 (2015).
doi: 10.1016/j.aop.2015.05.012
Brown, B. J., Laubscher, K., Kesselring, M. S. & Wootton, J. R. Poking holes and cutting corners to achieve clifford gates with the surface code. Phys. Rev. X 7, 021029 (2017).
Zhu, G., Hafezi, M. & Barkeshli, M. Quantum origami: transversal gates for quantum computation and measurement of topological order. Phys. Rev. Res. 2, 013285 (2020).
doi: 10.1103/PhysRevResearch.2.013285
Benhemou, A., Pachos, J. K. & Browne, D. E. Non-abelian statistics with mixed-boundary punctures on the toric code. Phys. Rev. A 105, 042417 (2022).
doi: 10.1103/PhysRevA.105.042417
Tantivasadakarn, N., Verresen, R. & Vishwanath, A. The shortest route to non-Abelian topological order on a quantum processor. Preprint at https://arxiv.org/abs/2209.03964 (2022).
Lensky, Y. D., Kechedzhi, K., Aleiner, I. & Kim, E.-A. Graph gauge theory of mobile non-Abelian anyons in a qubit stabilizer code. Preprint at https://arxiv.org/abs/2210.09282 (2022).
Stern, A. Anyons and the quantum Hall effect: a pedagogical review. Ann. Phys. 323, 204–249 (2008).
Harle, N., Shtanko, O. & Movassagh, R. Observing and braiding topological Majorana modes on programmable quantum simulators. Nat. Commun. 14, 2286 (2023)
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
doi: 10.1016/S0003-4916(02)00018-0
Freedman, M. H. P/np, and the quantum field computer. Proc. Natl Acad. Sci. USA 95, 98–101 (1998).
doi: 10.1073/pnas.95.1.98
pubmed: 9419335
pmcid: 18139
Pachos, J. K. Introduction to Topological Quantum Computation (Cambridge Univ. Press, 2012).
Stern, A. & Lindner, N. Topological quantum computation—from basic concepts to first experiments. Science 339, 1179–1184 (2013).
doi: 10.1126/science.1231473
pubmed: 23471401
Field, B. & Simula, T. Introduction to topological quantum computation with non-Abelian anyons. Quantum Sci. Technol. 3, 045004 (2018).
doi: 10.1088/2058-9565/aacad2
Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).
doi: 10.1016/0550-3213(91)90407-O
Willett, R. L., Pfeiffer, L. N. & West, K. W. Alternation and interchange of e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles. Phys. Rev. B 82, 205301 (2010).
doi: 10.1103/PhysRevB.82.205301
Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000).
doi: 10.1103/PhysRevB.61.10267
Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in P-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).
doi: 10.1103/PhysRevLett.86.268
pubmed: 11177808
Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
doi: 10.1103/PhysRevLett.105.077001
pubmed: 20868069
Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
doi: 10.1103/PhysRevLett.105.177002
pubmed: 21231073
Mourik, V. et al. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).
doi: 10.1126/science.1222360
pubmed: 22499805
Nadj-Perge, S. et al. Observation of majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).
doi: 10.1126/science.1259327
pubmed: 25278507
Banerjee, M. et al. Observation of half-integer thermal hall conductance. Nature 559, 205–210 (2018).
doi: 10.1038/s41586-018-0184-1
pubmed: 29867160
Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).
doi: 10.1038/s41586-018-0274-0
pubmed: 29995863
Bonderson, P., Kitaev, A. & Shtengel, K. Detecting non-Abelian statistics in the ν = 5/2 fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006).
doi: 10.1103/PhysRevLett.96.016803
pubmed: 16486496
Gottesman, D. Stabilizer Codes and Quantum Error Correction (California Institute of Technology, 1997).
Satzinger, K. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).
doi: 10.1126/science.abi8378
pubmed: 34855491
Wen, X.-G. Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 (2003).
doi: 10.1103/PhysRevLett.90.016803
pubmed: 12570641
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
doi: 10.1038/s41586-019-1666-5
pubmed: 31645734
Isakov, S. V. et al. Simulations of quantum circuits with approximate noise using qsim and cirq. Preprint at https://arxiv.org/abs/2111.02396 (2021).
Barkeshli, M., Bonderson, P., Cheng, M. & Wang, Z. Symmetry fractionalization, defects, and gauging of topological phases. Phys. Rev. B 100, 115147 (2019).
doi: 10.1103/PhysRevB.100.115147