Leptin and IGF-1 in Infancy Are Associated With Variants in DHCR7 and CYP2R1 That Relate With Type 1 Diabetes and 25OHD.
Infant, Newborn
Male
Female
Humans
Infant
Child, Preschool
Cholestanetriol 26-Monooxygenase
/ genetics
Diabetes Mellitus, Type 1
/ genetics
Insulin-Like Growth Factor I
/ genetics
Leptin
/ genetics
Prospective Studies
Cytochrome P450 Family 2
/ genetics
Vitamin D
/ metabolism
Vitamins
Polymorphism, Single Nucleotide
Genotype
Vitamin D Deficiency
/ genetics
Genetic Predisposition to Disease
IGF-1
early growth
leptin
type 1 diabetes
vitamin D
Journal
The Journal of clinical endocrinology and metabolism
ISSN: 1945-7197
Titre abrégé: J Clin Endocrinol Metab
Pays: United States
ID NLM: 0375362
Informations de publication
Date de publication:
18 10 2023
18 10 2023
Historique:
received:
24
01
2023
medline:
23
10
2023
pubmed:
12
5
2023
entrez:
12
5
2023
Statut:
ppublish
Résumé
Vitamin D has been variably implicated in risk of developing type 1 diabetes based on cohorts of at-risk individuals. Emergent type 1 diabetes in childhood is putatively preceded by altered growth. We explored whether polymorphisms in vitamin D metabolism genes modify risk of type 1 diabetes via effects on growth in a prospective, population-based cohort of infants. The Cambridge Baby Growth Study enrolled newborns from Cambridgeshire, UK, for follow-up in infancy. In 612 infants, we genotyped single nucleotide polymorphisms in vitamin D metabolism genes that relate with type 1 diabetes: rs10741657 and rs12794714 in CYP2R1, rs12785878 in DHCR7, and rs10877012 in CYP27B1. Multivariate linear regression analyses tested associations between genotypes and anthropometric indices (weight, length, and skinfold thickness) or growth-related hormones (C-peptide, IGF-1, and leptin) in infancy. Birth weight showed borderline associations with the diabetes risk-increasing alleles in CYP2R1, rs10741657 (β = -.11, P = .02) and rs12794714 (β = -.09, P = .04). The risk-increasing allele rs12794714 was also associated with higher IGF-1 levels at age 24 months (β = .30, P = .01). At age 3 months, the risk-increasing allele rs12785878 in DHCR7, known to negatively associate with 25-hydroxyvitamin D levels, showed a positive association with leptin levels (β = .23, P = .009), which was pronounced in girls (P = .004) vs boys (P = .7). The vitamin D metabolism genes DHCR7 and CYP2R1 might influence infancy leptin and IGF-1 levels respectively. These findings open the possibility for a developmental role of vitamin D that is mediated by growth-related hormones with implications for the onset of type 1 diabetes autoimmunity.
Identifiants
pubmed: 37170809
pii: 7160562
doi: 10.1210/clinem/dgad263
pmc: PMC10584008
doi:
Substances chimiques
Cholestanetriol 26-Monooxygenase
EC 1.14.15.15
Insulin-Like Growth Factor I
67763-96-6
Leptin
0
Cytochrome P450 Family 2
EC 1.14.14.1
Vitamin D
1406-16-2
Vitamins
0
CYP2R1 protein, human
EC 1.14.14.24
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1394-e1402Subventions
Organisme : Medical Research Council
ID : G1001995
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12015/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K50127X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : 7500001180
Pays : United Kingdom
Organisme : Medical Research Council
ID : U106179472
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society.
Références
Diabetologia. 2018 Mar;61(3):616-625
pubmed: 29128935
Front Endocrinol (Lausanne). 2018 Jul 23;9:410
pubmed: 30093882
Diabetes. 2007 Oct;56(10):2616-21
pubmed: 17606874
Diabetes. 2011 Nov;60(11):2748-57
pubmed: 21911741
Diabetes Care. 2021 Aug;44(8):1852-1859
pubmed: 34172490
Metabolism. 2015 Jan;64(1):92-104
pubmed: 25467840
Diabetologia. 2020 Apr;63(4):780-787
pubmed: 31912198
Growth Horm IGF Res. 2003 Apr-Jun;13(2-3):75-80
pubmed: 12735928
Diabetes Care. 2020 Mar;43(3):556-562
pubmed: 31896601
J Mol Endocrinol. 2018 Jul;61(1):T115-T137
pubmed: 29626053
Am J Clin Nutr. 2009 Jul;90(1):156-61
pubmed: 19474142
Int J Epidemiol. 1994 Dec;23(6):1234-41
pubmed: 7721526
Eur J Endocrinol. 2002 Feb;146(2):261-6
pubmed: 11834438
Diabetes. 2018 Jan;67(1):146-154
pubmed: 29061729
Diabet Med. 2009 Jul;26(7):673-8
pubmed: 19573115
FEBS J. 2009 Mar;276(5):1221-32
pubmed: 19175674
Immunity. 2010 Apr 23;32(4):457-67
pubmed: 20412756
Am J Epidemiol. 2006 Oct 15;164(8):711-24
pubmed: 16905645
PLoS Med. 2015 Aug 25;12(8):e1001866
pubmed: 26305103
Int J Epidemiol. 2016 Feb;45(1):35.a-g
pubmed: 26721600
JAMA Pediatr. 2015 Dec;169(12):e153759
pubmed: 26642117
Biosci Biotechnol Biochem. 2014;78(8):1283-92
pubmed: 25130728
Curr Diab Rep. 2008 Oct;8(5):393-8
pubmed: 18778589
Endocrinol Metab Clin North Am. 2010 Jun;39(2):365-79, table of contents
pubmed: 20511058
Sci Rep. 2015 Nov 06;5:16142
pubmed: 26543018
Diabetes. 2011 May;60(5):1624-31
pubmed: 21441443
J Clin Endocrinol Metab. 2016 Feb;101(2):723-9
pubmed: 26695863
Nucleic Acids Res. 2019 Jan 8;47(D1):D1005-D1012
pubmed: 30445434
Diabetologia. 2011 Nov;54(11):2779-88
pubmed: 21858504
J Biol Chem. 2016 Apr 15;291(16):8363-73
pubmed: 26887953
J Clin Endocrinol Metab. 1990 May;70(5):1292-8
pubmed: 1692331
Bioinformatics. 2015 Nov 1;31(21):3555-7
pubmed: 26139635
Lancet. 2010 Jul 17;376(9736):180-8
pubmed: 20541252
Am J Epidemiol. 2018 Jun 1;187(6):1174-1181
pubmed: 29186303
Eur J Clin Nutr. 2017 Oct;71(10):1144-1153
pubmed: 27966571
Br J Nutr. 2018 Jun;119(12):1416-1423
pubmed: 29690937
Sci Rep. 2018 Sep 3;8(1):13169
pubmed: 30177771
PLoS One. 2012;7(10):e46752
pubmed: 23056434
Pituitary. 2001 Jan-Apr;4(1-2):87-92
pubmed: 11824513