Validation of the g.tec Unicorn Hybrid Black wireless EEG system.


Journal

Psychophysiology
ISSN: 1540-5958
Titre abrégé: Psychophysiology
Pays: United States
ID NLM: 0142657

Informations de publication

Date de publication:
09 2023
Historique:
revised: 17 02 2023
received: 14 09 2022
accepted: 03 04 2023
medline: 8 8 2023
pubmed: 12 5 2023
entrez: 12 5 2023
Statut: ppublish

Résumé

Although dry and hybrid-style electrode technology has been well validated, systems utilizing these electrodes have not been widely adopted. One reason for this may be that the systems incorporating such technology present limitations that are fundamental to the EEG approach. The g.tec Unicorn Hybrid Black system, a low density Bluetooth EEG amplifier, however, attempts to address many of these limitations to allow greater flexibility to replicate methods used with traditional EEG amplifiers and extend them to more novel applications. The aim of the present investigation was to validate the g.tec Unicorn Hybrid Black amplifier to determine if it provides comparable data to a traditional laboratory-based system when no electrode preparation is utilized or if a saline-based solution is necessary to obtain sufficient signal quality. Stimulus-locked ERPs and EEG power spectrum data were concurrently recorded using both the Unicorn Hybrid Black amplifier and a traditional high-end laboratory-based low-impedance wired system. Findings suggest that the Unicorn Hybrid Black provides valid measures for investigations of frequency spectra even with no conductive solution applied. However, to obtain valid assessments of event-related brain potentials, it appears necessary to use a conductive solution for electrode preparation. This system appears well suited to allow for high-quality and flexible EEG measures available outside of traditional laboratory environments.

Identifiants

pubmed: 37171024
doi: 10.1111/psyp.14320
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14320

Informations de copyright

© 2023 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.

Références

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Clayson, P. E., Baldwin, S. A., Rocha, H. A., & Larson, M. J. (2021). The data-processing multiverse of event-related potentials (ERPs): A roadmap for the optimization and standardization of ERP processing and reduction pipelines. NeuroImage, 245, 118712. https://doi.org/10.1016/j.neuroimage.2021.118712
Cohen, J., & Polich, J. (1997). On the number of trials needed for P300. International Journal of Psychophysiology, 25(3), 249-255. https://doi.org/10.1016/S0167-8760(96)00743-X
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Goldstein, H. (2011). Multilevel statistical models (Vol. 922). John Wiley & Sons.
Heijs, J. J. A., Havelaar, R. J., Fiedler, P., van Wezel, R. J. A., & Heida, T. (2021). Validation of soft multipin dry EEG electrodes. Sensors, 21(20), Article 20. https://doi.org/10.3390/s21206827
Hon, W. K., Millard, C., Singh, J., Walden, I., & Crowcroft, J. (2016). Policy, legal and regulatory implications of a Europe-only cloud. International Journal of Law and Information Technology, 24(3), 251-278. https://doi.org/10.1093/ijlit/eaw006
Kam, J. W. Y., Griffin, S., Shen, A., Patel, S., Hinrichs, H., Heinze, H.-J., Deouell, L. Y., & Knight, R. T. (2019). Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes. NeuroImage, 184, 119-129. https://doi.org/10.1016/j.neuroimage.2018.09.012
Kappenman, E. S., & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47(5), 888-904. https://doi.org/10.1111/j.1469-8986.2010.01009.x
Krigolson, O. E., Williams, C. C., Norton, A., Hassall, C. D., & Colino, F. L. (2017). Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research. Frontiers in Neuroscience, 11, 1-10. https://doi.org/10.3389/fnins.2017.00109
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(863), 1-12. https://doi.org/10.3389/fpsyg.2013.00863
Lenth, R., Love, J., & Herve, M. (2017). emmeans: Estimated marginal means, aka least-squares means. https://github.com/rvlenth/emmeans
Mathewson, K. E., Harrison, T. J. L., & Kizuk, S. A. D. (2017). High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology, 54(1), 74-82. https://doi.org/10.1111/psyp.12536
Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2, 10. https://doi.org/10.3389/neuro.11.010.2008
Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9(4), 456-479.
Pontifex, M. B. (2020). Rmimic: An R package that mimic outputs of popular commercial statistics software packages with effect sizes and confidence intervals. (1.0). https://github.com/mattpontifex/Rmimic
Quené, H., & van den Bergh, H. (2004). On multi-level modeling of data from repeated measures designs: A tutorial. Speech Communication, 43(1), 103-121. https://doi.org/10.1016/j.specom.2004.02.004
R Core Team. (2019). R: A language and environment for statistical computing (3.6.1). https://www.R-project.org/
Rizopoulos, D. (2006). LTM: An R package for latent variable modelling and item response theory analysis. Journal of Statistical Software, 17(5), 1-25. https://doi.org/10.18637/jss.v017.i05
Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387-401. https://doi.org/10.1016/0013-4694(75)90263-1
Volpert-Esmond, H. I., Merkle, E. C., Levsen, M. P., Ito, T. A., & Bartholow, B. D. (2018). Using trial-level data and multilevel modeling to investigate within-task change in event-related potentials. Psychophysiology, 55(5), e13044. https://doi.org/10.1111/psyp.13044

Auteurs

Matthew B Pontifex (MB)

Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA.

Colt A Coffman (CA)

Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH