Strategies for automating analytical and bioanalytical laboratories.

Analytical chemistry Automation strategies Automation systems Laboratory automation Robotics Systems engineering

Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 25 01 2023
accepted: 25 04 2023
revised: 02 04 2023
medline: 7 8 2023
pubmed: 13 5 2023
entrez: 12 5 2023
Statut: ppublish

Résumé

Analytical measurement methods are used in different areas of production and quality control, diagnostics, environmental monitoring, or in research applications. If direct inline or online measurement methods are not possible, the samples taken have to be processed offline in the manual laboratory. Automated processes are increasingly being used to enhance throughput and improve the quality of results. In contrast to bioscreening, the degree of automation in (bio)analytical laboratories is still low. This is due in particular to the complexity of the processes, the required process conditions, and the complex matrices of the samples. The requirements of the process to be automated itself and numerous other parameters influence the selection of a suitable automation concept. Different automation strategies can be used to automate (bio)analytical processes. Classically, liquid handler-based systems are used. For more complex processes, systems with central robots are used to transport samples and labware. With the development of new collaborative robots, there will also be the possibility of distributed automation systems in the future, which will enable even more flexible automation and use of all subsystems. The complexity of the systems increases with the complexity of the processes to be automated.

Identifiants

pubmed: 37173407
doi: 10.1007/s00216-023-04727-2
pii: 10.1007/s00216-023-04727-2
pmc: PMC10181916
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5057-5066

Subventions

Organisme : European Research Council
ID : 856405
Pays : International

Informations de copyright

© 2023. The Author(s).

Références

Fry DW, Kraker AJ, McMichael A, Ambroso LA, Nelson JM, Leopold WR, et al. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science. 1994;265(5175):1093–5. https://doi.org/10.1126/science.8066447 .
doi: 10.1126/science.8066447 pubmed: 8066447
Nelson MH, Dolder CR. Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother. 2006;40(2):261–9. https://doi.org/10.1345/aph.1G387 .
doi: 10.1345/aph.1G387 pubmed: 16418322
Thaisrivongs S, Tomich PK, Watenpaugh KD, Chong K-T, et al. Structure-based design of HIV protease inhibitors: 4-hydroxycoumarins and 4-hxdroxy-2-pyrones as non peptidic inhibitors. J Med Chem. 1994;37(20):3200–4. https://doi.org/10.1021/jm00046a002 .
doi: 10.1021/jm00046a002 pubmed: 7932546
Corte BLD. From 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk](1,4)benzodiazepine-2(1H)-one (TIBO) to etravirine (TMC125): fifteen years of research on non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Med Chem. 2005;48(6):1689–96. https://doi.org/10.1021/jm040127p .
doi: 10.1021/jm040127p pubmed: 15771411
Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;386:1696–705. https://doi.org/10.1016/S0140-6736(06)69705-5 .
doi: 10.1016/S0140-6736(06)69705-5
Patel DA, Patel AC, Nolan WC, Huang G, Romero AG, Charlton N, et al. High-throughput screening normalized to biological response: application to antiviral drug discovery. J Biomol Screen. 2014;19(1):119–30. https://doi.org/10.1177/1087057113496848 .
doi: 10.1177/1087057113496848 pubmed: 23860224
Shukla SJ, Huang R, Austin CP, et al. The future of toxicity testing: a focus on in vitro methods using a high-throughput screening platform. Drug Discov Today. 2010;15(23–24):997–1007. https://doi.org/10.1016/j.drudis.2010.07.007 .
doi: 10.1016/j.drudis.2010.07.007 pubmed: 20708096 pmcid: 2994991
Attene-Ramos MS, Miller N, Huang R, et al. The Tox21 robotic platform for the assessment of environmental chemicals – from vision to reality. Drug Discov Today. 2013;18(15–16):716–23. https://doi.org/10.1016/j.drudis.2013.05.015 .
doi: 10.1016/j.drudis.2013.05.015 pubmed: 23732176 pmcid: 3771082
Schöneberg K. Working Paper Forschungsförderung Nummer 171. Branchenanalyse Laboranalytik - Update. Hans Böckler Stiftung. 2020. https://www.boeckler.de/fpdf/HBS-007608/p_fofoe_WP_171_2020.pdf .
Nörz D, Fischer N, Schultze A, Kluge S, Mayer-Runge U, Aepfelbacher M, Pfefferle S, Lütgehetman M. Clinical evaluation of a SARS-CoV-2 RT-PCR assay on a fully automated system for rapid on-demand testing in the hospital setting. J Clin Virol. 2020;128:104393. https://doi.org/10.1016/j.jcv.2020.104390 .
doi: 10.1016/j.jcv.2020.104390
Li W, Jian W, Fu Y (Eds.). Preparation in LC‐MS bioanalysis. Wiley 2019. https://doi.org/10.1002/9781119274315 . ISBN: 978–1–119–27429–2.
Soltani S, Jouyban A. Biological sample preparation: attempts on productivity increasing in bioanalysis. Bioanalysis. 2014;6(12):1691–710. https://doi.org/10.4155/bio.14.118 .
doi: 10.4155/bio.14.118 pubmed: 25077628
Peng SX, Branch TM, King SL. Fully automated 96-well liquid-liquid extraction for analysis of biological samples by liquid chromatography with tandem mass spectrometry. Anal Chem. 2001;73(3):708–14. https://doi.org/10.1021/ac001036c .
doi: 10.1021/ac001036c pubmed: 11217789
Bjørk MK, Simonsen KW, Andersen DW, et al. Quantification of 31 illicit and medicinal drugs and metabolites in whole blood by fully automated solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2013;405(8):2607–17. https://doi.org/10.1007/s00216-012-6670-7 .
doi: 10.1007/s00216-012-6670-7 pubmed: 23292043
Choi H, Baeck S, Jang M, et al. Simultaneous analysis of psychotropic phenylalkylamines in oral fluid by GC–MS with automated SPE and its application to legal cases. Forensic Sci Int. 2012;215(1–3):81–7. https://doi.org/10.1016/j.forsciint.2011.02.011 .
doi: 10.1016/j.forsciint.2011.02.011 pubmed: 21377815
Nielsen MK, Nedahl M, Johansen SS, et al. Validation of a fully automated solid-phase extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry method for quantification of 30 pharmaceuticals and metabolites in post-mortem blood and brain samples. Drug Test Anal. 2018;10:1147–57. https://doi.org/10.1002/dta.2359 .
doi: 10.1002/dta.2359
Fleischer H, Thurow K. Automation solutions for analytical measurement. 1
Bach A, Fleischer H, Wijayawardena B, Thurow K. Optimization of automated sample preparation for vitamin D determination on a Biomek i7 Workstation. SLAS Technology. 2021;26(6):615–29. https://doi.org/10.1177/24726303211030291 .
doi: 10.1177/24726303211030291 pubmed: 34282678
Bach A, Fleischer H, Wijayawardena B, Thurow K. Automation system for the flexible sample preparation for quantification of delta9-THC-D3, THC-OH, and THC-COOH from serum, saliva, and urine. Appl Sci. 2022;12(6):2838. https://doi.org/10.3390/app12062838 .
doi: 10.3390/app12062838
Goebel C, Trout G, Kazlauskas R. Rapid screening method for diuretics in doping control using automated solid phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Anal Chim Acta. 2004;502(1):65–74. https://doi.org/10.1016/j.aca.2003.09.062 .
doi: 10.1016/j.aca.2003.09.062
Kristoffersen L, Oiestad EL, Opdal MS, et al. Simultaneous determination of 6 beta-blockers, 3 calcium-channel antagonists, 4 angiotensin-II antagonists and 1 antiarrhythmic drug in post-mortem whole blood by automated solid phase extraction and liquid chromatography mass spectrometry: method development and robustness testing by experimental design. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;850(1–2):147–60. https://doi.org/10.1016/j.jchromb.2006.11.030 .
doi: 10.1016/j.jchromb.2006.11.030 pubmed: 17175206
Tsina I, Chu F, Kaloostian M, Ling Tam Y, Tarnowski T, Wong B. Manual and automated (robotic) high-performance liquid chromatography methods for the determination of mycophenolic acid and its glucuronide conjugate in human plasma. J Chromatogr B Biomed Appl. 1996;675(1):119–29. https://doi.org/10.1016/0378-4347(95)00343-6 .
doi: 10.1016/0378-4347(95)00343-6 pubmed: 8634753
Saitoh S, Yoshinori T. Fully automated laboratory robotic system for automating sample preparation and analysis to reduce cost and time in drug development process. JALA. 2008;13(5):265–74. https://doi.org/10.1016/j.jala.2008.07.001 .
doi: 10.1016/j.jala.2008.07.001
Neubert S, Junginger S, Roddelkopf T, Burgdorf SJ, Stoll N, Thurow K. Automated system for pouring and filtration tasks in laboratory applications. Chem Ing Tec. 2021;94(4):530–41. https://doi.org/10.1002/cite.202000225 .
doi: 10.1002/cite.202000225
Burgdorf SJ, Roddelkopf T, Thurow K. An optical approach for cell pellet detection. SLAS Technol 2022. S2472–6303(22)05184–6. https://doi.org/10.1016/j.slast.2022.11.001 . Accessed 24 Jan 2023.
Chu X, Fleischer H, Klos M. Application of dual-arm robot in biomedical analysis: sample preparation and transport. IEEE Instrumentation and Measurement Technology Conference I2MTC 2015:500–504. https://doi.org/10.1109/I2MTC.2015.7151318.
Fleischer H, Drews R, Janson J, et al. Application of a dual-arm robot in complex sample preparation and measurement processes. SLAS Technology. 2016;21(5):671–81. https://doi.org/10.1177/2211068216637352 .
doi: 10.1177/2211068216637352
Chu X, Klos M Thurow K, Fleischer H. Efficient application of dual-arm robots in analytical measurements using motion frames. In: Proceedings 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 2018, pp. 1–6, https://doi.org/10.1109/I2MTC.2018.8409532 .
Schmid FF, Schwarz T, Klos M, et al. Applicability of a dual-arm robotic system for automated downstream analysis of epidermal models. Appl Vitr Toxicol. 2016;2(2):118–25. https://doi.org/10.1089/aivt.2015.0027 .
doi: 10.1089/aivt.2015.0027
Nam G, Kim YJ, Kim YJ, et al. Development of dual-arm anticancer drug compounding robot and preparation system with adaptability and high-speed. J Int Soc Simul Surg. 2016;3(2):64–8. https://doi.org/10.18204/JISSiS.2016.3.2.064 .
doi: 10.18204/JISSiS.2016.3.2.064
Thurow K Cobots in the analytical laboratory – useful tool or gadget? In: Wiley Analytical Science. https://analyticalscience.wiley.com/do/10.1002/gitlab.19090 . Accessed 23rd January 2023.
Schwarze K, Buchanan J, Fermont JM, et al. The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet Med. 2020;22(1):85–94. https://doi.org/10.1038/s41436-019-0618-7 .
doi: 10.1038/s41436-019-0618-7 pubmed: 31358947
van Nimwegen KJ, van Soest RA, Veltman JA, et al. Is the $1000 genome as near as we think? A cost analysis of next-generation sequencing. Clin Chem. 2016;62(11):1458–64. https://doi.org/10.1373/clinchem.2016.258632 .
doi: 10.1373/clinchem.2016.258632 pubmed: 27630156
Thurow K. System concepts for robots in life science applications. Appl Sci. 2022;12(7):3257. https://doi.org/10.3390/app12073257 .
doi: 10.3390/app12073257
Liu H, Stoll N, Junginger S, Thurow K. Mobile robot for life science automation. Int J Adv Robot Syst 2013;10(7); https://doi.org/10.5772/56670 .
Burger B, Maffettone PM, Gusev V, et al. A mobile robotic chemist. Nature. 2020;583(7815):237–41. https://doi.org/10.1038/s41586-020-2442-2 .
doi: 10.1038/s41586-020-2442-2 pubmed: 32641813

Auteurs

Kerstin Thurow (K)

Center for Life Science Automation, University of Rostock, Rostock, Germany. Kerstin.Thurow@celisca.de.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Classifications MeSH