Robust retrospective motion correction of head motion using navigator-based and markerless motion tracking techniques.
MRI motion artifact correction
brain MRI
fat navigator
markerless head motion tracking
retrospective motion correction
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
revised:
05
04
2023
received:
22
12
2022
accepted:
26
04
2023
medline:
31
7
2023
pubmed:
15
5
2023
entrez:
15
5
2023
Statut:
ppublish
Résumé
This study investigated the artifacts arising from different types of head motion in brain MR images and how well these artifacts can be compensated using retrospective correction based on two different motion-tracking techniques. MPRAGE images were acquired using a 3 T MR scanner on a cohort of nine healthy participants. Subjects moved their head to generate circular motion (4 or 6 cycles/min), stepwise motion (small and large) and "simulated realistic" motion (nodding and slow diagonal motion), based on visual instructions. One MPRAGE scan without deliberate motion was always acquired as a "no motion" reference. Three dimensional fat-navigator (FatNavs) and a Tracoline markerless device (TracInnovations) were used to obtain motion estimates and images were separately reconstructed retrospectively from the raw data based on these different motion estimates. Image quality was recovered from both motion tracking techniques in our stepwise and slow diagonal motion scenarios in almost all cases, with the apparent visual image quality comparable to the no-motion case. FatNav-based motion correction was further improved in the case of stepwise motion using a skull masking procedure to exclude non-rigid motion of the neck from the co-registration step. In the case of circular motion, both methods struggled to correct for all motion artifacts. High image quality could be recovered in cases of stepwise and slow diagonal motion using both motion estimation techniques. The circular motion scenario led to more severe image artifacts that could not be fully compensated by the retrospective motion correction techniques used.
Identifiants
pubmed: 37183791
doi: 10.1002/mrm.29705
pmc: PMC7615144
mid: EMS188114
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1297-1315Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 200804
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 200804/Z/16/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT200804
Pays : United Kingdom
Informations de copyright
© 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Références
J Magn Reson Imaging. 2007 Jul;26(1):191-7
pubmed: 17659555
Radiology. 2010 Jul;256(1):229-37
pubmed: 20505061
J Magn Reson Imaging. 2000 Feb;11(2):174-81
pubmed: 10713951
Neuroimage. 2020 Nov 15;222:117227
pubmed: 32781231
Magn Reson Med. 2016 Mar;75(3):1030-9
pubmed: 25872755
Magn Reson Med. 2022 Feb;87(2):629-645
pubmed: 34490929
J Magn Reson Imaging. 2020 Sep;52(3):731-738
pubmed: 32144848
Magn Reson Med. 2019 Jul;82(1):126-144
pubmed: 30821010
Neuroimage. 2004;23 Suppl 1:S208-19
pubmed: 15501092
Magn Reson Med. 1999 Jan;41(1):163-70
pubmed: 10025625
IEEE Trans Image Process. 2004 Apr;13(4):600-12
pubmed: 15376593
Neuroimage. 2006 Jul 1;31(3):1116-28
pubmed: 16545965
Magn Reson Med. 2002 Jun;47(6):1202-10
pubmed: 12111967
IEEE Trans Image Process. 2011 Aug;20(8):2378-86
pubmed: 21292594
IEEE Trans Med Imaging. 2020 Apr;39(4):1064-1072
pubmed: 31535985
Magn Reson Med. 2019 Jan;81(1):258-274
pubmed: 30058216
Magn Reson Med. 2020 Jan;83(1):83-93
pubmed: 31400041
Magn Reson Med. 1990 Jul;15(1):152-7
pubmed: 2374495
Med Image Anal. 2001 Jun;5(2):143-56
pubmed: 11516708
Hum Brain Mapp. 2002 Nov;17(3):143-55
pubmed: 12391568
PLoS One. 2019 Apr 19;14(4):e0215524
pubmed: 31002725
J Neurosci Methods. 2007 May 15;162(1-2):8-13
pubmed: 17254636
Paediatr Anaesth. 2009 Mar;19(3):250-6
pubmed: 19143958
Radiology. 2005 Oct;237(1):288-94
pubmed: 16183936
Neuroimage. 2006 Jul 1;31(3):1038-50
pubmed: 16600642
PLoS One. 2019 May 17;14(5):e0217145
pubmed: 31100092
Magn Reson Med. 2010 Jan;63(1):91-105
pubmed: 20027635
Magn Reson Med. 2021 Mar;85(3):1427-1440
pubmed: 32989859
J Am Coll Radiol. 2015 Jul;12(7):689-95
pubmed: 25963225
Neuroimage. 2002 Oct;17(2):825-41
pubmed: 12377157
Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1293-322
pubmed: 11545704
Magn Reson Med. 2003 Mar;49(3):493-500
pubmed: 12594752
Magn Reson Med. 2023 Oct;90(4):1297-1315
pubmed: 37183791
Phys Med Biol. 2016 Mar 7;61(5):R32-56
pubmed: 26864183
Magn Reson Med. 2020 Feb;83(2):427-437
pubmed: 31400036
Magn Reson Med. 2017 Jul;78(1):193-203
pubmed: 27529516
J Magn Reson Imaging. 2015 Oct;42(4):887-901
pubmed: 25630632
IEEE Trans Med Imaging. 2010 Feb;29(2):339-49
pubmed: 19709968
Neuroimage. 2016 Feb 15;127:11-22
pubmed: 26654788
Magn Reson Med. 2012 Aug;68(2):389-99
pubmed: 22213578