An interpretable hybrid predictive model of COVID-19 cases using autoregressive model and LSTM.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 04 2023
25 04 2023
Historique:
received:
11
11
2022
accepted:
17
04
2023
medline:
17
5
2023
pubmed:
15
5
2023
entrez:
15
5
2023
Statut:
epublish
Résumé
The Coronavirus Disease 2019 (COVID-19) has had a profound impact on global health and economy, making it crucial to build accurate and interpretable data-driven predictive models for COVID-19 cases to improve public policy making. The extremely large scale of the pandemic and the intrinsically changing transmission characteristics pose a great challenge for effectively predicting COVID-19 cases. To address this challenge, we propose a novel hybrid model in which the interpretability of the Autoregressive model (AR) and the predictive power of the long short-term memory neural networks (LSTM) join forces. The proposed hybrid model is formalized as a neural network with an architecture that connects two composing model blocks, of which the relative contribution is decided data-adaptively in the training procedure. We demonstrate the favorable performance of the hybrid model over its two single composing models as well as other popular predictive models through comprehensive numerical studies on two data sources under multiple evaluation metrics. Specifically, in county-level data of 8 California counties, our hybrid model achieves 4.173% MAPE, outperforming the composing AR (5.629%) and LSTM (4.934%) alone on average. In country-level datasets, our hybrid model outperforms the widely-used predictive models such as AR, LSTM, Support Vector Machines, Gradient Boosting, and Random Forest, in predicting the COVID-19 cases in Japan, Canada, Brazil, Argentina, Singapore, Italy, and the United Kingdom. In addition to the predictive performance, we illustrate the interpretability of our proposed hybrid model using the estimated AR component, which is a key feature that is not shared by most black-box predictive models for COVID-19 cases. Our study provides a new and promising direction for building effective and interpretable data-driven models for COVID-19 cases, which could have significant implications for public health policy making and control of the current COVID-19 and potential future pandemics.
Identifiants
pubmed: 37185289
doi: 10.1038/s41598-023-33685-z
pii: 10.1038/s41598-023-33685-z
pmc: PMC10126574
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6708Informations de copyright
© 2023. The Author(s).
Références
J Public Health Res. 2020 Jul 08;9(3):1765
pubmed: 32874964
Chaos Solitons Fractals. 2020 Oct;139:110050
pubmed: 32834604
Front Public Health. 2022 Jul 22;10:923978
pubmed: 35937245
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22071-22080
pubmed: 31619572
Neural Comput. 1997 Nov 15;9(8):1735-80
pubmed: 9377276
J R Soc Interface. 2022 Feb;19(187):20210702
pubmed: 35167769
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51):
pubmed: 34903655
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16732-16738
pubmed: 32616574
Sci Total Environ. 2020 Aug 1;728:138762
pubmed: 32334157
Sci Rep. 2016 Sep 26;6:33707
pubmed: 27665707
Chaos Solitons Fractals. 2020 Jun;135:109846
pubmed: 32341628
Chaos Solitons Fractals. 2020 Jun;135:109864
pubmed: 32390691
Jpn J Infect Dis. 2010 Jul;63(4):264-70
pubmed: 20657066
Health Technol (Berl). 2022;12(6):1259-1276
pubmed: 36406187
Inf Syst Front. 2021;23(6):1417-1429
pubmed: 33897274
Entropy (Basel). 2021 Sep 28;23(10):
pubmed: 34681991
Nonlinear Dyn. 2020;101(3):1667-1680
pubmed: 32836803
BMJ Open. 2022 Jul 1;12(7):e056685
pubmed: 35777884
Travel Med Infect Dis. 2020 Sep - Oct;37:101742
pubmed: 33081974
Neurocomputing. 2022 Jan 11;468:335-344
pubmed: 34690432
Array (N Y). 2021 Sep;11:100085
pubmed: 35083430
Int J Environ Res Public Health. 2021 Apr 06;18(7):
pubmed: 33917544
Front Genet. 2019 Nov 12;10:1077
pubmed: 31781160
IEEE Trans Cybern. 2020 Jul;50(7):2891-2904
pubmed: 32396126
Bull World Health Organ. 1998;76(4):327-33
pubmed: 9803583
Chaos Solitons Fractals. 2022 Mar;156:111779
pubmed: 35013654
Biomed Signal Process Control. 2022 Mar;73:103441
pubmed: 34899960
Chaos Solitons Fractals. 2020 Nov;140:110210
pubmed: 32843823
Infect Dis Model. 2021;6:98-111
pubmed: 33294749
Data Brief. 2020 Oct;32:106175
pubmed: 32839733
Neural Comput Appl. 2021 Feb 4;:1-11
pubmed: 33564213
Expert Syst. 2022 Mar;39(3):e12714
pubmed: 34177035
Chaos Solitons Fractals. 2020 Nov;140:110121
pubmed: 32834633
Comput Biol Med. 2021 Aug;135:104606
pubmed: 34247134
Chaos Solitons Fractals. 2020 Nov;140:110212
pubmed: 32839642
SN Comput Sci. 2021;2(1):11
pubmed: 33263111
Results Phys. 2021 Aug;27:104462
pubmed: 34178594
Int J Environ Res Public Health. 2016 Jul 26;13(8):
pubmed: 27472353