Scalable continuous-flow electroporation platform enabling T cell transfection for cellular therapy manufacturing.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
26 04 2023
Historique:
received: 26 07 2022
accepted: 21 04 2023
medline: 17 5 2023
pubmed: 15 5 2023
entrez: 15 5 2023
Statut: epublish

Résumé

Viral vectors represent a bottleneck in the manufacturing of cellular therapies. Electroporation has emerged as an approach for non-viral transfection of primary cells, but standard cuvette-based approaches suffer from low throughput, difficult optimization, and incompatibility with large-scale cell manufacturing. Here, we present a novel electroporation platform capable of rapid and reproducible electroporation that can efficiently transfect small volumes of cells for research and process optimization and scale to volumes required for applications in cellular therapy. We demonstrate delivery of plasmid DNA and mRNA to primary human T cells with high efficiency and viability, such as > 95% transfection efficiency for mRNA delivery with < 2% loss of cell viability compared to control cells. We present methods for scaling delivery that achieve an experimental throughput of 256 million cells/min. Finally, we demonstrate a therapeutically relevant modification of primary T cells using CRISPR/Cas9 to knockdown T cell receptor (TCR) expression. This study displays the capabilities of our system to address unmet needs for efficient, non-viral engineering of T cells for cell manufacturing.

Identifiants

pubmed: 37185305
doi: 10.1038/s41598-023-33941-2
pii: 10.1038/s41598-023-33941-2
pmc: PMC10133335
doi:

Substances chimiques

RNA, Messenger 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

6857

Informations de copyright

© 2023. The Author(s).

Références

Methods Protoc. 2020 Nov 18;3(4):
pubmed: 33217926
Nat Rev Drug Discov. 2020 Mar;19(3):185-199
pubmed: 31900462
Gene Ther. 2021 Sep;28(9):560-571
pubmed: 33846552
Stem Cell Res Ther. 2021 Jul 28;12(1):428
pubmed: 34321099
Nat Biomed Eng. 2019 Dec;3(12):974-984
pubmed: 31182835
J Transl Med. 2012 Apr 04;10:69
pubmed: 22475724
Nature. 2017 Mar 2;543(7643):113-117
pubmed: 28225754
Front Immunol. 2020 May 12;11:888
pubmed: 32477359
Mol Ther Methods Clin Dev. 2017 Dec 22;8:131-140
pubmed: 29687032
Annu Rev Biophys. 2019 May 6;48:63-91
pubmed: 30786231
Curr Gene Ther. 2016;16(2):98-129
pubmed: 27029943
Regen Med. 2014;9(5):649-72
pubmed: 25372080
Integr Biol (Camb). 2009 Mar;1(3):242-51
pubmed: 20023735
Bioelectrochemistry. 2009 Feb;74(2):265-71
pubmed: 18930698
Nat Rev Clin Oncol. 2020 Mar;17(3):147-167
pubmed: 31848460
Nano Lett. 2012 Dec 12;12(12):6322-7
pubmed: 23145796
Biophys J. 1992 Nov;63(5):1320-7
pubmed: 1282374
BMC Mol Cell Biol. 2020 Feb 28;21(1):9
pubmed: 32111153
N Engl J Med. 2011 Aug 25;365(8):725-33
pubmed: 21830940
Sci Rep. 2021 Nov 1;11(1):21407
pubmed: 34725429
Front Immunol. 2019 Apr 30;10:957
pubmed: 31114587
J Immunol Res. 2018 Apr 17;2018:2386187
pubmed: 29850622
Gene Ther. 2011 Sep;18(9):849-56
pubmed: 21451576
Bioelectrochemistry. 2020 Apr;132:107442
pubmed: 31923714
Mol Ther Methods Clin Dev. 2016 Dec 31;4:92-101
pubmed: 28344995
Sci Rep. 2020 Oct 22;10(1):18045
pubmed: 33093518
Biotechnol Prog. 2021 Jan;37(1):e3066
pubmed: 32808434
Mol Ther. 2016 Mar;24(3):570-81
pubmed: 26502778
Biochim Biophys Acta. 2005 Aug 5;1724(3):270-80
pubmed: 15951114
Biochim Biophys Acta. 2003 Aug 7;1614(2):193-200
pubmed: 12896812
Protein Cell. 2017 Jul;8(7):514-526
pubmed: 28523432
Mol Ther Nucleic Acids. 2016 Mar 08;5:e291
pubmed: 27111417
Sci Adv. 2021 Apr 14;7(16):
pubmed: 33853779
Philos Trans R Soc Lond B Biol Sci. 2015 Oct 19;370(1680):20150017
pubmed: 26416686
Annu Rev Immunol. 2014;32:189-225
pubmed: 24423116
Curr Opin Biotechnol. 2018 Oct;53:164-181
pubmed: 29462761
Bioelectrochemistry. 2022 Oct;147:108216
pubmed: 35932533
Nature. 2018 Jul;559(7714):405-409
pubmed: 29995861
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2082-7
pubmed: 23341631
Technol Cancer Res Treat. 2002 Oct;1(5):341-50
pubmed: 12625759
Biophys J. 1996 Dec;71(6):3430-41
pubmed: 8968612
N Engl J Med. 2013 Apr 18;368(16):1509-1518
pubmed: 23527958
Chem Rev. 2018 Aug 22;118(16):7409-7531
pubmed: 30052023
PLoS One. 2016 Jul 25;11(7):e0159434
pubmed: 27454174
Science. 2020 Feb 28;367(6481):
pubmed: 32029687

Auteurs

Jacob A VanderBurgh (JA)

CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA.

Thomas N Corso (TN)

CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA.

Stephen L Levy (SL)

CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA.

Harold G Craighead (HG)

CyteQuest, Inc, 95 Brown Road, Box 1011, Ithaca, NY, 14850, USA. hcraighead@cytequest.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH