Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
25 04 2023
Historique:
received: 21 04 2022
accepted: 14 04 2023
medline: 17 5 2023
pubmed: 15 5 2023
entrez: 15 5 2023
Statut: epublish

Résumé

Antibodies have the capacity to bind a diverse set of antigens, and they have become critical therapeutics and diagnostic molecules. The binding of antibodies is facilitated by a set of six hypervariable loops that are diversified through genetic recombination and mutation. Even with recent advances, accurate structural prediction of these loops remains a challenge. Here, we present IgFold, a fast deep learning method for antibody structure prediction. IgFold consists of a pre-trained language model trained on 558 million natural antibody sequences followed by graph networks that directly predict backbone atom coordinates. IgFold predicts structures of similar or better quality than alternative methods (including AlphaFold) in significantly less time (under 25 s). Accurate structure prediction on this timescale makes possible avenues of investigation that were previously infeasible. As a demonstration of IgFold's capabilities, we predicted structures for 1.4 million paired antibody sequences, providing structural insights to 500-fold more antibodies than have experimentally determined structures.

Identifiants

pubmed: 37185622
doi: 10.1038/s41467-023-38063-x
pii: 10.1038/s41467-023-38063-x
pmc: PMC10129313
doi:

Substances chimiques

Antibodies 0
Complementarity Determining Regions 0
Antigens 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

2389

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM141881
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM078221
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Immunity. 2021 Aug 10;54(8):1853-1868.e7
pubmed: 34331873
Bioinformatics. 2020 Jul 1;36(Suppl_1):i268-i275
pubmed: 32657412
Nat Biotechnol. 2017 Nov;35(11):1026-1028
pubmed: 29035372
Science. 2021 Aug 20;373(6557):871-876
pubmed: 34282049
Patterns (N Y). 2021 Dec 09;3(2):100406
pubmed: 35199061
Front Immunol. 2022 Aug 12;13:958584
pubmed: 36032123
Science. 2021 Sep 03;373(6559):1109-1116
pubmed: 34344823
PLoS Comput Biol. 2010 Jan 22;6(1):e1000644
pubmed: 20098500
Nat Biotechnol. 2010 Sep;28(9):965-9
pubmed: 20802495
J Biol Chem. 2021 Aug;297(2):100966
pubmed: 34273351
Bioinform Adv. 2022 Jun 17;2(1):vbac046
pubmed: 36699403
BMC Bioinformatics. 2022 Mar 16;23(1):93
pubmed: 35296230
Antibodies (Basel). 2019 Aug 23;8(3):
pubmed: 31544850
Nucleic Acids Res. 2015 Jan;43(Database issue):D432-8
pubmed: 25392411
Nat Commun. 2021 Apr 23;12(1):2403
pubmed: 33893299
Curr Opin Investig Drugs. 2009 Nov;10(11):1212-24
pubmed: 19876789
Nat Methods. 2022 Jun;19(6):679-682
pubmed: 35637307
MAbs. 2022 Jan-Dec;14(1):2020203
pubmed: 35133949
Nucleic Acids Res. 2016 Jul 8;44(W1):W474-8
pubmed: 27131379
Patterns (N Y). 2022 May 18;3(7):100513
pubmed: 35845836
J Mol Biol. 2021 Sep 3;433(18):167113
pubmed: 34161780
Protein Eng Des Sel. 2016 Oct;29(10):409-418
pubmed: 27276984
Cell Syst. 2022 Apr 20;13(4):274-285.e6
pubmed: 35120643
PLoS One. 2021 Mar 25;16(3):e0234282
pubmed: 33764990
Bioinformatics. 2022 Mar 28;38(7):1877-1880
pubmed: 35099535
PLoS Comput Biol. 2021 Mar 1;17(3):e1008781
pubmed: 33647011
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2113766119
pubmed: 35486691
Nat Biotechnol. 2022 Nov;40(11):1617-1623
pubmed: 36192636
Sci Immunol. 2021 Aug 20;6(62):
pubmed: 34417258
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Cell Rep. 2021 Nov 2;37(5):109923
pubmed: 34731611
Methods Mol Biol. 2008;426:145-59
pubmed: 18542861
Cell Rep. 2021 Sep 28;36(13):109760
pubmed: 34534459
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659
pubmed: 28746339
MAbs. 2021 Jan-Dec;13(1):1873478
pubmed: 33448242
Nat Biotechnol. 2023 Jan 26;:
pubmed: 36702895
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):7112-7127
pubmed: 34232869
J Immunol. 2011 Jun 1;186(11):6357-67
pubmed: 21525384
Curr Opin Chem Biol. 2021 Dec;65:1-8
pubmed: 34015749
Science. 2022 Jul 22;377(6604):387-394
pubmed: 35862514
J Chem Theory Comput. 2017 Jun 13;13(6):3031-3048
pubmed: 28430426
Nat Biotechnol. 2014 Feb;32(2):158-68
pubmed: 24441474
J Immunol. 2018 Oct 15;201(8):2502-2509
pubmed: 30217829
PLoS Comput Biol. 2022 Jun 3;18(6):e1010124
pubmed: 35658008
Protein Eng Des Sel. 2013 Oct;26(10):611-20
pubmed: 23708320
Nature. 2022 Nov;611(7935):352-357
pubmed: 36289331
PLoS Comput Biol. 2018 Apr 27;14(4):e1006112
pubmed: 29702641
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15):
pubmed: 33876751
PLoS Comput Biol. 2021 Dec 13;17(12):e1009675
pubmed: 34898603
Proteins. 2014 Aug;82(8):1553-62
pubmed: 24668560
PLoS One. 2022 Jun 15;17(6):e0258173
pubmed: 35704640
Nat Commun. 2018 Jun 29;9(1):2542
pubmed: 29959318
Nucleic Acids Res. 2014 Jan;42(Database issue):D1140-6
pubmed: 24214988
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11):
pubmed: 33712545

Auteurs

Jeffrey A Ruffolo (JA)

Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, 21218, USA.

Lee-Shin Chu (LS)

Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.

Sai Pooja Mahajan (SP)

Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.

Jeffrey J Gray (JJ)

Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, 21218, USA. jgray@jhu.edu.
Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA. jgray@jhu.edu.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Humans Breast Neoplasms Female Deep Learning Ultrasonography, Mammary
Humans Deep Learning Mouth Neoplasms Drug Resistance, Neoplasm Cell Line, Tumor

Structural basis for molecular assembly of fucoxanthin chlorophyll

Koji Kato, Yoshiki Nakajima, Jian Xing et al.
1.00
Diatoms Photosystem I Protein Complex Chlorophyll Binding Proteins Cryoelectron Microscopy Light-Harvesting Protein Complexes

Classifications MeSH