Cerebral blood flow patterns in preterm and term neonates assessed with pseudo-continuous arterial spin labeling perfusion MRI.
arterial spin labeling (ASL)
brain injury
cerebral blood flow (CBF)
pattern analysis
premature neonates
Journal
Human brain mapping
ISSN: 1097-0193
Titre abrégé: Hum Brain Mapp
Pays: United States
ID NLM: 9419065
Informations de publication
Date de publication:
15 06 2023
15 06 2023
Historique:
revised:
21
03
2023
received:
26
09
2022
accepted:
08
04
2023
medline:
24
5
2023
pubmed:
15
5
2023
entrez:
15
5
2023
Statut:
ppublish
Résumé
In preterm (PT) infants, regional cerebral blood flow (CBF) disturbances may predispose to abnormal brain maturation even without overt brain injury. Therefore, it would be informative to determine the spatial distribution of grey matter (GM) CBF in PT and full-term (FT) newborns at term-equivalent age (TEA) and to assess the relationship between the features of the CBF pattern and both prematurity and prematurity-related brain lesions. In this prospective study, we obtained measures of CBF in 66 PT (51 without and 15 with prematurity-related brain lesions) and 38 FT newborns through pseudo-continuous arterial spin labeling (pCASL) MRI acquired at TEA. The pattern of GM CBF was characterized by combining an atlas-based automated segmentation of structural MRI with spatial normalization and hierarchical clustering. The effects of gestational age (GA) at birth and brain injury on the CBF pattern were investigated. We identified 4 physiologically-derived clusters of brain regions that were labeled Fronto-Temporal, Parieto-Occipital, Insular-Deep GM (DGM) and Sensorimotor, from the least to the most perfused. We demonstrated that GM perfusion was associated with GA at birth in the Fronto-Temporal and Sensorimotor clusters, positively and negatively, respectively. Moreover, the presence of periventricular leukomalacia was associated with significantly increased Fronto-Temporal GM perfusion and decreased Insular-DGM perfusion, while the presence of germinal matrix hemorrhage appeared to mildly decrease the Insular-DGM perfusion. Prematurity and prematurity-related brain injury heterogeneously affect brain perfusion. ASL MRI may, therefore, have strong potential as a noninvasive tool for the accurate stratification of individuals at risk of domain-specific impairment.
Identifiants
pubmed: 37186355
doi: 10.1002/hbm.26315
pmc: PMC10203784
doi:
Substances chimiques
Spin Labels
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3833-3844Informations de copyright
© 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
Références
Cereb Cortex. 2019 Mar 1;29(3):1139-1149
pubmed: 29420697
Hum Brain Mapp. 2023 Jun 15;44(9):3833-3844
pubmed: 37186355
Neuron. 2016 Jan 20;89(2):248-68
pubmed: 26796689
Neuroimage Clin. 2014 Mar 19;4:517-25
pubmed: 24818078
Pediatrics. 2014 Aug;134(2):e444-53
pubmed: 25070300
Eur J Radiol. 2013 Mar;82(3):538-43
pubmed: 23199750
Cereb Cortex. 2011 Feb;21(2):300-6
pubmed: 20522538
Neuroimage. 2018 Jun;173:88-112
pubmed: 29409960
Eur J Paediatr Neurol. 2009 Jul;13(4):317-26
pubmed: 18674940
Neuroimage. 2011 Feb 1;54(3):2033-44
pubmed: 20851191
Front Mol Neurosci. 2022 Feb 03;14:827370
pubmed: 35185465
Clin Anat. 2015 Mar;28(2):168-83
pubmed: 25043926
Neuroimage Clin. 2017 May 26;15:401-407
pubmed: 28603687
J Neuropathol Exp Neurol. 2011 Oct;70(10):841-58
pubmed: 21937910
PLoS One. 2011 Apr 14;6(4):e18746
pubmed: 21533194
Pediatrics. 2016 Nov;138(5):
pubmed: 27940782
Semin Perinatol. 2011 Feb;35(1):34-43
pubmed: 21255705
J Neurosci. 2004 Oct 13;24(41):8940-9
pubmed: 15483113
Acta Neuropathol. 2007 Dec;114(6):619-31
pubmed: 17912538
Brain Inform. 2020 Nov 10;7(1):15
pubmed: 33170396
AJNR Am J Neuroradiol. 2018 Oct;39(10):1912-1918
pubmed: 30213808
Neuroradiology. 2020 Dec;62(12):1689-1699
pubmed: 32778914
Radiology. 2021 Jun;299(3):691-702
pubmed: 33787337
Sleep Med Rev. 2014 Aug;18(4):299-310
pubmed: 23907095
AJNR Am J Neuroradiol. 2018 Jul;39(7):1330-1335
pubmed: 29748205
PLoS One. 2012;7(12):e51879
pubmed: 23284800
Elife. 2016 May 31;5:
pubmed: 27244241
Pediatr Res. 1998 Jan;43(1):28-33
pubmed: 9432109
J Neuropathol Exp Neurol. 1999 May;58(5):407-29
pubmed: 10331430
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Hum Brain Mapp. 2020 Dec;41(17):4952-4963
pubmed: 32820839
J Pediatr. 2018 Feb;193:54-61.e2
pubmed: 29212618
Magn Reson Med. 2015 Jan;73(1):102-16
pubmed: 24715426
Acta Neuropathol Commun. 2021 Oct 15;9(1):166
pubmed: 34654477
Pediatrics. 2015 Dec;136(6):1132-43
pubmed: 26598455
J Child Neurol. 2018 Nov;33(13):851-860
pubmed: 30112963
Neuroimage. 2017 Feb 15;147:233-242
pubmed: 27988320
J Neurosurg. 2006 Jun;104(6 Suppl):396-408
pubmed: 16776375
Psychoneuroendocrinology. 2013 Apr;38(4):509-21
pubmed: 22910687
Cereb Cortex. 2015 Jul;25(7):1897-905
pubmed: 24488941
PLoS One. 2012;7(7):e42148
pubmed: 22860067
Nature. 2013 Dec 19;504(7480):394-400
pubmed: 24270812
Cortex. 2013 Jun;49(6):1711-21
pubmed: 22959979
J Neurosci. 2008 Apr 2;28(14):3586-94
pubmed: 18385317
J Cereb Blood Flow Metab. 2015 Oct;35(10):1579-86
pubmed: 26082013
NMR Biomed. 2011 Jan;24(1):80-8
pubmed: 20669148