Deep learning models to predict the editing efficiencies and outcomes of diverse base editors.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
Mar 2024
Historique:
received: 29 09 2022
accepted: 13 04 2023
medline: 18 3 2024
pubmed: 16 5 2023
entrez: 15 5 2023
Statut: ppublish

Résumé

Applications of base editing are frequently restricted by the requirement for a protospacer adjacent motif (PAM), and selecting the optimal base editor (BE) and single-guide RNA pair (sgRNA) for a given target can be difficult. To select for BEs and sgRNAs without extensive experimental work, we systematically compared the editing windows, outcomes and preferred motifs for seven BEs, including two cytosine BEs, two adenine BEs and three C•G to G•C BEs at thousands of target sequences. We also evaluated nine Cas9 variants that recognize different PAM sequences and developed a deep learning model, DeepCas9variants, for predicting which variants function most efficiently at sites with a given target sequence. We then develop a computational model, DeepBE, that predicts editing efficiencies and outcomes of 63 BEs that were generated by incorporating nine Cas9 variants as nickase domains into the seven BE variants. The predicted median efficiencies of BEs with DeepBE-based design were 2.9- to 20-fold higher than those of rationally designed SpCas9-containing BEs.

Identifiants

pubmed: 37188916
doi: 10.1038/s41587-023-01792-x
pii: 10.1038/s41587-023-01792-x
doi:

Substances chimiques

CRISPR-Associated Protein 9 EC 3.1.-
RNA, Guide, CRISPR-Cas Systems 0
BES 10191-18-1
Alkanesulfonic Acids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

484-497

Subventions

Organisme : National Research Foundation of Korea (NRF)
ID : 2022R1A3B1078084
Organisme : National Research Foundation of Korea (NRF)
ID : 2018R1A5A2025079
Organisme : National Research Foundation of Korea (NRF)
ID : 2022M3A9E4017127
Organisme : National Research Foundation of Korea (NRF)
ID : 2022M3A9F3017506
Organisme : National Research Foundation of Korea (NRF)
ID : 2022R1C1C2004229
Organisme : Ministry of Trade, Industry and Energy (Ministry of Trade, Industry and Energy, Korea)
ID : HN21C0917 (H.H.K.))
Organisme : Ministry of Health and Welfare (Ministry of Health, Welfare and Family Affairs)
ID : HI21C1314

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
pubmed: 27096365 pmcid: 4873371 doi: 10.1038/nature17946
Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
pubmed: 29160308 pmcid: 5726555 doi: 10.1038/nature24644
Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).
pubmed: 30323312 pmcid: 6535181 doi: 10.1038/s41576-018-0059-1
Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).
pubmed: 32690971 doi: 10.1038/s41587-020-0609-x
Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35–40 (2021).
pubmed: 32690970 doi: 10.1038/s41587-020-0592-2
Chen, L. et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 12, 1384 (2021).
pubmed: 33654077 pmcid: 7925527 doi: 10.1038/s41467-021-21559-9
Koblan, L. W. et al. Efficient C*G-to-G*C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat. Biotechnol. 39, 1414–1425 (2021).
pubmed: 34183861 pmcid: 8985520 doi: 10.1038/s41587-021-00938-z
Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).
pubmed: 28875174 pmcid: 5576876 doi: 10.1126/sciadv.aao4774
Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).
pubmed: 32042165 pmcid: 7335424 doi: 10.1038/s41587-020-0414-6
Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052 (2020).
pubmed: 32345976 pmcid: 7189382 doi: 10.1038/s41467-020-15887-5
Richter, M. F. et al. Author correction: Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 901 (2020).
pubmed: 32433548 doi: 10.1038/s41587-020-0562-8
Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).
pubmed: 32284586 doi: 10.1038/s41587-020-0491-6
Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).
pubmed: 26098369 pmcid: 4540238 doi: 10.1038/nature14592
Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).
pubmed: 26735016 pmcid: 4851738 doi: 10.1038/nature16526
Anders, C., Bargsten, K. & Jinek, M. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61, 895–902 (2016).
pubmed: 26990992 pmcid: 5065715 doi: 10.1016/j.molcel.2016.02.020
Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).
pubmed: 29512652 pmcid: 5951633 doi: 10.1038/nature26155
Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).
pubmed: 30166441 pmcid: 6368452 doi: 10.1126/science.aas9129
Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).
pubmed: 32042170 pmcid: 7145744 doi: 10.1038/s41587-020-0412-8
Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).
pubmed: 32217751 pmcid: 7297043 doi: 10.1126/science.aba8853
Chatterjee, P. et al. An engineered ScCas9 with broad PAM range and high specificity and activity. Nat. Biotechnol. 38, 1154–1158 (2020).
pubmed: 32393822 doi: 10.1038/s41587-020-0517-0
Chatterjee, P. et al. A Cas9 with PAM recognition for adenine dinucleotides. Nat. Commun. 11, 2474 (2020).
pubmed: 32424114 pmcid: 7235249 doi: 10.1038/s41467-020-16117-8
Kim, N. et al. Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat. Biotechnol. 38, 1328–1336 (2020).
pubmed: 32514125 doi: 10.1038/s41587-020-0537-9
Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).
pubmed: 29813047 pmcid: 6126947 doi: 10.1038/nbt.4172
Zafra, M. P. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36, 888–893 (2018).
pubmed: 29969439 pmcid: 6130889 doi: 10.1038/nbt.4194
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
pubmed: 23287718 pmcid: 3795411 doi: 10.1126/science.1231143
Kim, H. K. et al. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Sci. Adv. 5, eaax9249 (2019).
pubmed: 31723604 pmcid: 6834390 doi: 10.1126/sciadv.aax9249
Song, M. et al. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat. Biotechnol. 38, 1037–1043 (2020).
pubmed: 32632303 doi: 10.1038/s41587-020-0573-5
Kim, H. K. et al. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat. Biomed. Eng. 4, 111–124 (2020).
pubmed: 31937939 doi: 10.1038/s41551-019-0505-1
Hill, A. J. et al. On the design of CRISPR-based single-cell molecular screens. Nat. Methods 15, 271–274 (2018).
pubmed: 29457792 pmcid: 5882576 doi: 10.1038/nmeth.4604
Kim, H. K. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198–206 (2021).
pubmed: 32958957 doi: 10.1038/s41587-020-0677-y
Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).
pubmed: 30819931 doi: 10.1126/science.aaw7166
Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).
pubmed: 30819928 pmcid: 7301308 doi: 10.1126/science.aav9973
Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).
pubmed: 30995674 pmcid: 6657343 doi: 10.1038/s41586-019-1161-z
Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).
pubmed: 28191901 pmcid: 5388574 doi: 10.1038/nbt.3803
Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480 e430 (2020).
pubmed: 32533916 pmcid: 7384975 doi: 10.1016/j.cell.2020.05.037
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).
pubmed: 32572269 doi: 10.1038/s41587-020-0561-9
Kim, H. K. et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat. Methods 14, 153–159 (2017).
pubmed: 27992409 doi: 10.1038/nmeth.4104
Beale, R. C. et al. Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J. Mol. Biol. 337, 585–596 (2004).
pubmed: 15019779 doi: 10.1016/j.jmb.2004.01.046
Liu, L. D. et al. Intrinsic nucleotide preference of diversifying base editors guides antibody ex vivo affinity maturation. Cell Rep. 25, 884–892 e883 (2018).
pubmed: 30355495 doi: 10.1016/j.celrep.2018.09.090
Kim, H. K. et al. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).
pubmed: 29431740 doi: 10.1038/nbt.4061
Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).
pubmed: 24234437 doi: 10.1093/nar/gkt1113
Landrum, M. J. et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 48, D835–D844 (2020).
pubmed: 31777943 doi: 10.1093/nar/gkz972
Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).
pubmed: 24916110 pmcid: 4134749 doi: 10.1161/CIRCRESAHA.115.304351
Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).
pubmed: 25830891 pmcid: 4393360 doi: 10.1038/nature14299
Chadwick, A. C., Wang, X. & Musunuru, K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler. Thromb. Vasc. Biol. 37, 1741–1747 (2017).
pubmed: 28751571 pmcid: 5570639 doi: 10.1161/ATVBAHA.117.309881
Dang, Y. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 16, 280 (2015).
pubmed: 26671237 pmcid: 4699467 doi: 10.1186/s13059-015-0846-3
Sastry, L., Xu, Y., Cooper, R., Pollok, K. & Cornetta, K. Evaluation of plasmid DNA removal from lentiviral vectors by benzonase treatment. Hum. Gene Ther. 15, 221–226 (2004).
pubmed: 14975194 doi: 10.1089/104303404772680029
Sack, L. M., Davoli, T., Xu, Q., Li, M. Z. & Elledge, S. J. Sources of error in mammalian genetic screens. G3 (Bethesda) 6, 2781–2790 (2016).
pubmed: 27402361 pmcid: 5015935 doi: 10.1534/g3.116.030973
Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).
pubmed: 30809026 pmcid: 6533916 doi: 10.1038/s41587-019-0032-3
Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
pubmed: 25719670 doi: 10.1038/nature14236
Abadi, M. et al. TensorFlow: a system for large-scale machine learning. In Proc. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) 265–283 (USENIX Association, 2016).
Kim, N. et al. Evaluation of Cas9 and base editor variants Datasets. Sequence Read Archive. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA821929/ (2023).
Kim, N. et al. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Source Code. GitHub https://github.com/NahyeKim/DeepBE (2023).

Auteurs

Nahye Kim (N)

Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.

Sungchul Choi (S)

Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.

Sungjae Kim (S)

Precision Medicine Institute, Macrogen, Seoul, Republic of Korea.

Myungjae Song (M)

Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.

Jung Hwa Seo (JH)

Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.

Seonwoo Min (S)

LG AI Research, Seoul, Republic of Korea.

Jinman Park (J)

Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.

Sung-Rae Cho (SR)

Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea.
Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea.

Hyongbum Henry Kim (HH)

Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea. hkim1@yuhs.ac.
Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea. hkim1@yuhs.ac.
Graduate Program of NanoScience and Technology, Yonsei University, Seoul, Republic of Korea. hkim1@yuhs.ac.
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea. hkim1@yuhs.ac.
Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea. hkim1@yuhs.ac.
Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. hkim1@yuhs.ac.
Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea. hkim1@yuhs.ac.
Department of Otolaryngology, University of California, San Francisco, CA, USA. hkim1@yuhs.ac.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
Humans Breast Neoplasms Female Deep Learning Ultrasonography, Mammary
Humans Deep Learning Mouth Neoplasms Drug Resistance, Neoplasm Cell Line, Tumor

Classifications MeSH