Follicular Fluid-Derived Small Extracellular Vesicles Alleviate DHEA-Induced Granulosa Cell Apoptosis by Delivering LINC00092.
Apoptosis
Follicular fluid-extracellular vesicles
LIN28B
LINC00092
Polycystic ovary syndrome
Journal
Reproductive sciences (Thousand Oaks, Calif.)
ISSN: 1933-7205
Titre abrégé: Reprod Sci
Pays: United States
ID NLM: 101291249
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
29
11
2022
accepted:
23
04
2023
pubmed:
16
5
2023
medline:
16
5
2023
entrez:
15
5
2023
Statut:
ppublish
Résumé
Polycystic ovary syndrome (PCOS) is a perplexing condition in females of reproductive age. Dysplasia of ovarian granulosa cell (GC) is implicated in PCOS. Follicular fluid (FF)-extracellular vesicles (Evs) are important in cell-cell communication during follicular development. The current study elaborated on the function and mechanism of FF-Evs in the viability and apoptosis of GC cells in PCOS development. Human GC cells KGN were treated with dehydroepiandrosterone (DHEA) to mimic a PCOS-like condition in vitro, which were further co-cultured with the FF-derived Evs (FF-Evs). The FF-Evs treatment significantly reduced DHEA-induced apoptosis of KGN cells while promoting cell viability and migration. The lncRNA microarray analysis showed that FF-Evs mainly deliver LINC00092 into the KGN cells. Knockdown of LINC00092 negated the protective effect of FF-Evs against DHEA-induced damage on KGN cells. Moreover, by performing bioinformatics analyses and biotin-labeled RNA pull-down assay, we found that LINC00092 could bind to the RNA binding protein LIN28B and inhibit its binding to pre-microRNA-18-5p, which allowed biogenesis of pre-miR-18-5p and increased the expression of miR-18b-5p, a miRNA with known alleviating role in PCOS by suppressing the PTEN mRNA. Collectively, the present work demonstrates that FF-Evs can alleviate DHEA-induced GC damage by delivering LINC00092.
Identifiants
pubmed: 37188981
doi: 10.1007/s43032-023-01251-7
pii: 10.1007/s43032-023-01251-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3092-3102Subventions
Organisme : Science and Technology Department of Hainan Province
ID : 2019RC389
Organisme : Science and Technology Department of Hainan Province
ID : ZDYF2017086
Organisme : Science and Technology Department of Hainan Province
ID : ZDYF2019157
Organisme : Hainan Province Clinical Medical Center
ID : QWYH202175
Organisme : Excellent Talent Team of Hainan Province
ID : QRCBT202121
Informations de copyright
© 2023. The Author(s), under exclusive licence to Society for Reproductive Investigation.
Références
Meier RK. Polycystic Ovary Syndrome. Nurs Clin North Am. 2018;53(3):407–20.
pubmed: 30100006
Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–84.
pubmed: 29569621
Ajmal N, Khan SZ, Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. Eur J Obstet Gynecol Reprod Biol X. 2019;3:100060.
pubmed: 31403134
pmcid: 6687436
Astapova O, Minor BMN, Hammes SR. Physiological and pathological androgen actions in the ovary. Endocrinology. 2019;160(5):1166–74.
pubmed: 30912811
pmcid: 6937455
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.
pubmed: 23065822
pmcid: 5393155
Wekker V, van Dammen L, Koning A, Heida KY, Painter RC, Limpens J, et al. Long-term cardiometabolic disease risk in women with PCOS: a systematic review and meta-analysis. Hum Reprod Update. 2020;26(6):942–60.
pubmed: 32995872
pmcid: 7600286
Manabe N, Goto Y, Matsuda-Minehata F, Inoue N, Maeda A, Sakamaki K, et al. Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia. J Reprod Dev. 2004;50(5):493–514.
pubmed: 15514456
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as biomarkers for female reproductive diseases diagnosis and therapy. Int J Mol Sci. 2021;22(4):2165.
Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.
pubmed: 12077402
Brinca AT, Ramalhinho AC, Sousa A, Oliani AH, Breitenfeld L, Passarinha LA, et al. Follicular fluid: a powerful tool for the understanding and diagnosis of polycystic ovary syndrome. Biomedicines. 2022;10(6):1254.
Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9.
pubmed: 20164441
Kowalczyk A, Wrzecinska M, Czerniawska-Piatkowska E, Kupczynski R. Exosomes - spectacular role in reproduction. Biomed Pharmacother. 2022;148:112752.
pubmed: 35220028
Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182–93.
pubmed: 26663221
Hung WT, Navakanitworakul R, Khan T, Zhang P, Davis JS, McGinnis LK, et al. Stage-specific follicular extracellular vesicle uptake and regulation of bovine granulosa cell proliferation. Biol Reprod. 2017;97(4):644–55.
pubmed: 29025042
pmcid: 6248580
Hung WT, Hong X, Christenson LK, McGinnis LK. Extracellular vesicles from bovine follicular fluid support cumulus expansion. Biol Reprod. 2015;93(5):117.
pubmed: 26423123
pmcid: 4712005
Zhou Z, Tu Z, Zhang J, Tan C, Shen X, Wan B, et al. Follicular fluid-derived exosomal microRNA-18b-5p regulates PTEN-mediated PI3K/Akt/mTOR signaling pathway to inhibit polycystic ovary syndrome development. Mol Neurobiol. 2022;59(4):2520–31.
pubmed: 35092573
Geng X, Zhao J, Huang J, Li S, Chu W, Wang WS, et al. lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 Downregulation-Mediated CDKN1A Promoter Hypomethylation. Mol Ther. 2021;29(3):1279–93.
pubmed: 33212300
Mu L, Sun X, Tu M, Zhang D. Non-coding RNAs in polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2021;19(1):10.
pubmed: 33446212
pmcid: 7807442
Tu M, Wu Y, Mu L, Zhang D. Long non-coding RNAs: novel players in the pathogenesis of polycystic ovary syndrome. Ann Transl Med. 2021;9(2):173.
pubmed: 33569475
pmcid: 7867878
Tu J, Chen Y, Li Z, Yang H, Chen H, Yu Z. Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res. 2020;13(1):63.
pubmed: 32503679
pmcid: 7275442
Wang L, Fan H, Zou Y, Yuan Q, Hu X, Chen X, et al. Aberrant expression of long non-coding RNAs in exosomes in follicle fluid from PCOS patients. Front Genet. 2020;11: 608178.
pubmed: 33679867
Zhao L, Ji G, Le X, Wang C, Xu L, Feng M, et al. Long noncoding RNA LINC00092 acts in cancer-associated fibroblasts to drive glycolysis and progression of ovarian cancer. Cancer Res. 2017;77(6):1369–82.
pubmed: 28087599
Li Y, Zheng Q, Sun D, Cui X, Chen S, Bulbul A, et al. Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J Cell Physiol. 2019;234(5):7435–47.
pubmed: 30580448
Yin J, Ye YL, Hu T, Xu LJ, Zhang LP, Ji RN, et al. Hsa_circRNA_102610 upregulation in Crohn’s disease promotes transforming growth factor-beta1-induced epithelial-mesenchymal transition via sponging of hsa-miR-130a-3p. World J Gastroenterol. 2020;26(22):3034–55.
pubmed: 32587447
pmcid: 7304108
Jia B, Yin X, Wang Y, Qian J, He Y, Yang C, et al. CircRNA-PTN sponges miR-326 to promote proliferation in hepatocellular carcinoma. Onco Targets Ther. 2020;13:4893–903.
pubmed: 32581550
pmcid: 7269632
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 2011;147(5):1066–79.
pubmed: 22118463
pmcid: 3227872
Witchel SF, Teede HJ, Pena AS. Curtailing PCOS. Pediatr Res. 2020;87(2):353–61.
pubmed: 31627209
Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic role of mesenchymal stem cell-derived extracellular vesicles in female reproductive diseases. Front Endocrinol (Lausanne). 2021;12:665645.
pubmed: 34248842
Ni XR, Sun ZJ, Hu GH, Wang RH. High concentration of insulin promotes apoptosis of primary cultured rat ovarian granulosa cells via its increase in extracellular HMGB1. Reprod Sci. 2015;22(3):271–7.
pubmed: 25228632
Yuan C, Li Z, Zhao Y, Wang X, Chen L, Zhao Z, et al. Follicular fluid exosomes: Important modulator in proliferation and steroid synthesis of porcine granulosa cells. FASEB J. 2021;35(5):e21610.
pubmed: 33908671
Chi XX, Zhang T, Chu XL, Zhen JL, Zhang DJ. The regulatory effect of Genistein on granulosa cell in ovary of rat with PCOS through Bcl-2 and Bax signaling pathways. J Vet Med Sci. 2018;80(8):1348–55.
pubmed: 29937456
pmcid: 6115251
Oktay KH, Oktay MH. Immunohistochemical analysis of tyrosine phosphorylation and AP-1 transcription factors c-Jun, Jun D, and Fos family during early ovarian follicle development in the mouse. Appl Immunohistochem Mol Morphol. 2004;12(4):364–9.
pubmed: 15536339
Fang X, Xia W, Li S, Qi Y, Liu M, Yu Y, et al. SIRT2 is critical for sheep oocyte maturation through regulating function of surrounding granulosa cells. Int J Mol Sci. 2022;23(9):5013.
Sun L, Li D, Song K, Wei J, Yao S, Li Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep. 2017;7(1):2552.
pubmed: 28566720
pmcid: 5451424
Zhang Q, Sun J, Huang Y, Bu S, Guo Y, Gu T, et al. Human amniotic epithelial cell-derived exosomes restore ovarian function by transferring MicroRNAs against apoptosis. Mol Ther Nucleic Acids. 2019;16:407–18.
pubmed: 31022607
pmcid: 6479666
Zhou W, Zhang T, Lian Y, Zhang W, Yang M, Li Y, et al. Exosomal lncRNA and mRNA profiles in polycystic ovary syndrome: bioinformatic analysis reveals disease-related networks. Reprod Biomed Online. 2022;44(5):777–90.
pubmed: 35337736
Li J, Lu F, Shao X, You B. Investigating the potential clinical significance of long non-coding RNA 00092 in patients with breast cancer. Ann Transl Med. 2022;10(10):602.
pubmed: 35722403
pmcid: 9201173
Zhao CM, Li LL, Xu JW, Li ZW, Shi P, Jiang R. LINC00092 Suppresses the malignant progression of breast invasive ductal carcinoma through modulating SFRP1 expression by sponging miR-1827. Cell Transplant. 2022;31:9636897221086968.
pubmed: 35343265
Huang X, Wu B, Chen M, Hong L, Kong P, Wei Z, et al. Depletion of exosomal circLDLR in follicle fluid derepresses miR-1294 function and inhibits estradiol production via CYP19A1 in polycystic ovary syndrome. Aging (Albany NY). 2020;12(15):15414–35.
pubmed: 32651991
Zhao Y, Tao M, Wei M, Du S, Wang H, Wang X. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). Artif Cells Nanomed Biotechnol. 2019;47(1):3804–13.
pubmed: 31549864
Tesfaye D, Gebremedhn S, Salilew-Wondim D, Hailay T, Hoelker M, Grosse-Brinkhaus C, et al. MicroRNAs: tiny molecules with a significant role in mammalian follicular and oocyte development. Reproduction. 2018;155(3):R121–35.
pubmed: 29170163
Virant-Klun I, Stahlberg A, Kubista M, Skutella T. MicroRNAs: from female fertility, germ cells, and stem cells to cancer in humans. Stem Cells Int. 2016;2016:3984937.
pubmed: 26664407
Li J, Meng H, Bai Y, Wang K. Regulation of lncRNA and its role in cancer metastasis. Oncol Res. 2016;23(5):205–17.
pubmed: 27098144
pmcid: 7838649
Suzuki HI, Katsura A, Miyazono K. A role of uridylation pathway for blockade of let-7 microRNA biogenesis by Lin28B. Cancer Sci. 2015;106(9):1174–81.
pubmed: 26080928
pmcid: 4582986
Butler AE, Ramachandran V, Cunningham TK, David R, Gooderham NJ, Benurwar M, et al. Increased MicroRNA levels in women with polycystic ovarian syndrome but without insulin resistance: a pilot prospective study. Front Endocrinol (Lausanne). 2020;11:571357.
pubmed: 33101204
Fu X, Meng Z, Liang W, Tian Y, Wang X, Han W, et al. miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene. 2014;33(34):4296–306.
pubmed: 24056962