Caecilian Genomes Reveal the Molecular Basis of Adaptation and Convergent Evolution of Limblessness in Snakes and Caecilians.


Journal

Molecular biology and evolution
ISSN: 1537-1719
Titre abrégé: Mol Biol Evol
Pays: United States
ID NLM: 8501455

Informations de publication

Date de publication:
02 05 2023
Historique:
medline: 30 6 2023
pubmed: 17 5 2023
entrez: 17 5 2023
Statut: ppublish

Résumé

We present genome sequences for the caecilians Geotrypetes seraphini (3.8 Gb) and Microcaecilia unicolor (4.7 Gb), representatives of a limbless, mostly soil-dwelling amphibian clade with reduced eyes, and unique putatively chemosensory tentacles. More than 69% of both genomes are composed of repeats, with retrotransposons being the most abundant. We identify 1,150 orthogroups that are unique to caecilians and enriched for functions in olfaction and detection of chemical signals. There are 379 orthogroups with signatures of positive selection on caecilian lineages with roles in organ development and morphogenesis, sensory perception, and immunity amongst others. We discover that caecilian genomes are missing the zone of polarizing activity regulatorysequence (ZRS) enhancer of Sonic Hedgehog which is also mutated in snakes. In vivo deletions have shown ZRS is required for limb development in mice, thus, revealing a shared molecular target implicated in the independent evolution of limblessness in snakes and caecilians.

Identifiants

pubmed: 37194566
pii: 7166927
doi: 10.1093/molbev/msad102
pmc: PMC10195157
pii:
doi:

Substances chimiques

Hedgehog Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.

Références

Curr Drug Targets. 2018;19(1):38-54
pubmed: 28124606
Methods Mol Biol. 2014;1079:155-70
pubmed: 24170401
J Mol Biol. 2001 Dec 7;314(4):937-51
pubmed: 11734009
Genome Biol Evol. 2014 Jul;6(7):1818-29
pubmed: 25115007
Nucleic Acids Res. 2020 Jan 8;48(D1):D682-D688
pubmed: 31691826
Sci Rep. 2018 Jul 18;8(1):10872
pubmed: 30022098
PLoS Comput Biol. 2019 Aug 21;15(8):e1007273
pubmed: 31433799
Cell Rep. 2022 Jan 18;38(3):110280
pubmed: 35045302
Biol Reprod. 2007 Feb;76(2):303-13
pubmed: 17079737
Nucleic Acids Res. 2019 Jul 2;47(W1):W5-W10
pubmed: 31062021
Bioinformatics. 2016 Aug 15;32(16):2508-10
pubmed: 27153597
Mob DNA. 2015 Jun 02;6:11
pubmed: 26045719
Biochem J. 2009 Jul 29;422(1):171-80
pubmed: 19489739
C R Biol. 2004 Jan;327(1):65-76
pubmed: 15015756
Dev Cell. 2012 Feb 14;22(2):459-67
pubmed: 22340503
Mamm Genome. 2006 Feb;17(2):103-10
pubmed: 16465590
Nature. 2006 Apr 13;440(7086):926-9
pubmed: 16612382
BMC Evol Biol. 2017 Jul 6;17(1):162
pubmed: 28683774
Bioinformatics. 2006 Jan 15;22(2):134-41
pubmed: 16287941
Mol Biol Evol. 2002 Jun;19(6):950-8
pubmed: 12032251
Biol Direct. 2008 May 21;3:20
pubmed: 18495041
Cell. 1991 Apr 5;65(1):175-87
pubmed: 1840504
Nat Biotechnol. 2015 May;33(5):555-62
pubmed: 25690854
Mol Biol Evol. 2019 Jun 1;36(6):1344-1356
pubmed: 30903171
Genome Biol Evol. 2016 Jan 05;8(2):330-44
pubmed: 26733575
Mol Biol Evol. 2007 Aug;24(8):1586-91
pubmed: 17483113
Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11466-73
pubmed: 18695221
Mol Phylogenet Evol. 2014 Apr;73:177-89
pubmed: 24480323
Gigascience. 2021 Feb 16;10(2):
pubmed: 33590861
Eye (Lond). 2020 Apr;34(4):690-694
pubmed: 31527767
Nature. 2021 Apr;592(7856):737-746
pubmed: 33911273
BMC Bioinformatics. 2018 Nov 29;19(1):460
pubmed: 30497373
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457
pubmed: 32300014
Nature. 2018 Feb 1;554(7690):50-55
pubmed: 29364872
BMC Biol. 2012 Jul 27;10:65
pubmed: 22839781
Proc Biol Sci. 2002 Aug 7;269(1500):1563-9
pubmed: 12184826
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819
pubmed: 28387841
Mol Biol Evol. 2016 Aug;33(8):2117-34
pubmed: 27189539
Gigascience. 2021 Jan 9;10(1):
pubmed: 33420778
Bioinformatics. 2012 Feb 15;28(4):495-502
pubmed: 22199391
Mol Biol Evol. 2013 Sep;30(9):2145-56
pubmed: 23813979
Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):333-43
pubmed: 26116913
PLoS One. 2013;8(3):e57756
pubmed: 23483926
Nat Genet. 1998 Jun;19(2):125-33
pubmed: 9620767
Curr Biol. 2012 Sep 11;22(17):R668-9
pubmed: 22974987
Genome Res. 2015 Oct;25(10):1570-80
pubmed: 26286554
Genomics Proteomics Bioinformatics. 2021 Feb;19(1):123-139
pubmed: 33677107
Genome Biol. 2019 Nov 14;20(1):238
pubmed: 31727128
Proc Biol Sci. 2012 Jun 22;279(1737):2396-401
pubmed: 22357266
Int J Biochem Cell Biol. 1997 Apr;29(4):555-8
pubmed: 9363632
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
Cell. 2019 Aug 8;178(4):807-819.e21
pubmed: 31398338
Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12475-80
pubmed: 11035812
Nat Commun. 2017 Oct 10;8(1):818
pubmed: 29018201
Genome Biol. 2021 Apr 29;22(1):120
pubmed: 33910595
Bioinformatics. 2020 May 1;36(9):2896-2898
pubmed: 31971576
Dev Biol. 2014 Jun 15;390(2):181-90
pubmed: 24680895
J Biochem. 2018 Feb 1;163(2):85-95
pubmed: 29161414
Nat Methods. 2016 Dec;13(12):1050-1054
pubmed: 27749838
Nat Methods. 2013 Jun;10(6):563-9
pubmed: 23644548
Trends Genet. 2005 Apr;21(4):207-10
pubmed: 15797614
Cell. 2016 Oct 20;167(3):633-642.e11
pubmed: 27768887
Bioinformatics. 2021 Apr 1;36(22-23):5516-5518
pubmed: 33325502
Ophthalmology. 2018 Jun;125(6):894-903
pubmed: 29398085
Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45
pubmed: 26553804
J Morphol. 1987 May;192(2):101-111
pubmed: 29925202
Genome Biol. 2018 Aug 24;19(1):125
pubmed: 30143029
BMC Evol Biol. 2013 Apr 29;13:93
pubmed: 23627680
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Bioinformatics. 2005 Feb 1;21(3):390-2
pubmed: 15374874
Nat Rev Immunol. 2008 Nov;8(11):849-60
pubmed: 18836477
Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314
pubmed: 30418610
Immunogenetics. 2012 Nov;64(11):781-94
pubmed: 23000944
J Ophthalmol. 2013;2013:987494
pubmed: 23840940

Auteurs

Vladimir Ovchinnikov (V)

Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Science, University of Nottingham, Nottingham, United Kingdom.

Marcela Uliano-Silva (M)

Tree of Life Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.

Mark Wilkinson (M)

Herpetology Laboratory, The Natural History Museum, London, United Kingdom.

Jonathan Wood (J)

Tree of Life Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.

Michelle Smith (M)

Scientific Operations, Wellcome Sanger Institute, Cambridge, United Kingdom.

Karen Oliver (K)

Scientific Operations, Wellcome Sanger Institute, Cambridge, United Kingdom.

Ying Sims (Y)

Tree of Life Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.

James Torrance (J)

Tree of Life Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.

Alexander Suh (A)

School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.
Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

Shane A McCarthy (SA)

Tree of Life Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.
Department of Genetics, University of Cambridge, Cambridge, United Kingdom.

Richard Durbin (R)

Tree of Life Programme, Wellcome Sanger Institute, Cambridge, United Kingdom.
Department of Genetics, University of Cambridge, Cambridge, United Kingdom.

Mary J O'Connell (MJ)

Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Science, University of Nottingham, Nottingham, United Kingdom.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH