To aggregate or not to aggregate - Is it a matter of the ribosome?


Journal

BioEssays : news and reviews in molecular, cellular and developmental biology
ISSN: 1521-1878
Titre abrégé: Bioessays
Pays: United States
ID NLM: 8510851

Informations de publication

Date de publication:
07 2023
Historique:
revised: 05 05 2023
received: 01 12 2022
accepted: 05 05 2023
medline: 22 6 2023
pubmed: 17 5 2023
entrez: 17 5 2023
Statut: ppublish

Résumé

Neurodegenerative syndromes present as proteinopathies - does ribosomal infidelity contribute to the protein toxicity that is the driving force for neuronal cell loss? Intracellular and extracellular protein aggregates overwhelm the clearance capacity of cells and tissues. Proteins aggregate when hydrophobic residues are exposed. Hydrophobic residues become exposed when proteins are misfolded. Protein misfolding can originate from translational errors at the ribosome. Indeed, the most error-prone process in gene expression is translation at the ribosome. Recent evidence indicates that manipulating the ribosomal accuracy impacts on the lifespan of model organisms and a reduced translational accuracy is accompanied by neurodegeneration. The first hit in aging-associated neurodegenerative disease may be the well-documented decline of cellular buffering capacity by aging. A second hit that impacts on the quality of protein synthesis could be the driving force for the observed loss of proteostasis in neurodegeneration. This hypothesis provides an explanation for the late onset of most neurodegenerative diseases.

Identifiants

pubmed: 37194995
doi: 10.1002/bies.202200230
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2200230

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2023 The Authors. BioEssays published by Wiley Periodicals LLC.

Références

Troulinaki, K., & Tavernarakis, N. (2005). Neurodegenerative conditions associated with ageing: A molecular interplay? Mechanisms of Ageing and Development, 126(1), 23-33.
Dillin, A., & Cohen, E. (2011). Ageing and protein aggregation-mediated disorders: From invertebrates to mammals. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 366(1561), 94-98.
Orgel, L. E. (1963). The maintenance of the accuracy of protein synthesis and its relevance to ageing. PNAS, 49(4), 517-521.
Hipp, M. S., Kasturi, P., & Hartl, F. U. (2019). The proteostasis network and its decline in ageing. Nature Reviews Molecular Cell Biology, 20(7), 421-435.
Frankowska, N., Lisowska, K., & Witkowski, J. M. (2022). Proteolysis dysfunction in the process of aging and age-related diseases. Frontiers in Aging, 3, 927630.
Alupei, M. C., Maity, P., Esser, P. R., Krikki, I., Tuorto, F., Parlato, R., Penzo, M., Schelling, A., Laugel, V., Montanaro, L., Scharffetter-Kochanek, K., & Iben, S. (2018). Loss of proteostasis is a pathomechanism in cockayne syndrome. Cell Reports, 23(6), 1612-1619.
Qiang, M., Khalid, F., Phan, T., Ludwig, C., Scharffetter-Kochanek, K., & Iben, S. (2021). Cockayne syndrome-associated CSA and CSB mutations impair ribosome biogenesis, ribosomal protein stability, and global protein folding. Cells, 10(7), 1616.
Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W., & Balch, W. E. (2009). Biological and chemical approaches to diseases of proteostasis deficiency. Annual Review of Biochemistry, 78, 959-991.
Kim, S., Kim, D. K., Jeong, S., & Lee, J. (2022). The common cellular events in the neurodegenerative diseases and the associated role of endoplasmic reticulum stress. International Journal of Molecular Sciences, 23(11), 5894.
Rolli, S., & Sontag, E. M. (2022). Spatial sequestration of misfolded proteins in neurodegenerative diseases. Biochemical Society Transactions, 50(2), 759-771.
Jurcau, A. (2022). Molecular pathophysiological mechanisms in Huntington's disease. Biomedicines, 10(6), 1432.
Eshraghi, M., Karunadharma, P. P., Blin, J., Shahani, N., Ricci, E. P., Michel, A., Urban, N. T., Galli, N., Sharma, M., Ramírez-Jarquín, U. N., Florescu, K., Hernandez, J., & Subramaniam, S. (2021). Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nature Communications, 12(1), 1461.
Franco-Iborra, S., Plaza-Zabala, A., Montpeyo, M., Sebastian, D., Vila, M., & Martinez-Vicente, M. (2021). Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy, 17(3), 672-689.
Franco-Iborra, S., Vila, M., & Perier, C. (2018). Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson's disease and Huntington's disease. Frontiers in Neuroscience, 12, 342.
Pircs, K., Drouin-Ouellet, J., Horváth, V., Gil, J., Rezeli, M., Garza, R., Grassi, D. A., Sharma, Y., St-Amour, I., Harris, K., Jönsson, M. E., Johansson, P. A., Vuono, R., Fazal, S. V., Stoker, T., Hersbach, B. A., Sharma, K., Lagerwall, J., Lagerström, S., …, Jakobsson, J. (2022). Distinct subcellular autophagy impairments in induced neurons from patients with Huntington's disease. Brain, 145(9), 3035-3057.
Danzer, K. M., Haasen, D., Karow, A. R., Moussaud, S., Habeck, M., Giese, A., Kretzschmar, H., Hengerer, B., & Kostka, M. (2007). Different species of alpha-synuclein oligomers induce calcium influx and seeding. Journal of Neuroscience, 27(34), 9220-9232.
Tofaris, G. K. (2022). Initiation and progression of alpha-synuclein pathology in Parkinson's disease. Cellular and Molecular Life Sciences, 79(4), 210.
Ezzat, K., Sturchio, A., & Espay, A. J. (2022). Proteins do not replicate, they precipitate: Phase transition and loss of function toxicity in amyloid pathologies. Biology (Basel), 11(4), 535.
Ferrer, I. (2023). Hypothesis review: Alzheimer's overture guidelines. Brain Pathology, 33(1), e13122.
Drummond, D. A., & Wilke, C. O. (2008). Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell, 134(2), 341-352.
Mohler, K., & Ibba, M. (2017). Translational fidelity and mistranslation in the cellular response to stress. Nature Microbiology, 2, 17117.
Shcherbakov, D., Teo, Y., Boukari, H., Cortes-Sanchon, A., Mantovani, M., Osinnii, I., Moore, J., Juskeviciene, R., Brilkova, M., Duscha, S., Kumar, H. S., Laczko, E., Rehrauer, H., Westhof, E., Akbergenov, R., & Böttger, E. C. (2019). Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis. Communications Biology, 2, 381.
Moore, J., Akbergenov, R., Nigri, M., Isnard-Petit, P., Grimm, A., Seebeck, P., Restelli, L., Frank, S., Eckert, A., Thiam, K., Wolfer, D. P., Shcherbakov, D., & Böttger, E. C. (2021). Random errors in protein synthesis activate an age-dependent program of muscle atrophy in mice. Communications Biology, 4(1), 703.
Pakula, A. A., & Sauer, R. T. (1989). Genetic analysis of protein stability and function. Annual Review of Genetics, 23, 289-310.
Sala, A. J., Bott, L. C., & Morimoto, R. I. (2017). Shaping proteostasis at the cellular, tissue, and organismal level. Journal of Cell Biology, 216(5), 1231-1241.
Törner, R., Kupreichyk, T., Hoyer, W., & Boisbouvier, J. (2022). The role of heat shock proteins in preventing amyloid toxicity. Frontiers in Molecular Biosciences, 9, 1045616.
Rimal, S., Li, Y., Vartak, R., Geng, J., Tantray, I., Li, S., Huh, S., Vogel, H., Glabe, C., Grinberg, L. T., Spina, S., Seeley, W. W., Guo, S., & Lu, B. (2021). Inefficient quality control of ribosome stalling during APP synthesis generates CAT-tailed species that precipitate hallmarks of Alzheimer's disease. Acta Neuropathologica Communications, 9(1), 169.
Frottin, F., Schueder, F., Tiwary, S., Gupta, R., Körner, R., Schlichthaerle, T., Cox, J., Jungmann, R., Hartl, F. U., & Hipp, M. S. (2019). The nucleolus functions as a phase-separated protein quality control compartment. Science, 365(6451), 342-347.
Khalid, F., Phan, T., Qiang, M., Maity, P., Lasser, T., Wiese, S., Penzo, M., Alupei, M., Orioli, D., Scharffetter-Kochanek, K., & Iben, S. (2022). TFIIH mutations can impact on translational fidelity of the ribosome. Human Molecular Genetics, 32(7), 1102-1113.
Phan, T., Maity, P., Ludwig, C., Streit, L., Michaelis, J., Tsesmelis, M., Scharffetter-Kochanek, K., & Iben, S. (2021). Nucleolar TFIIE plays a role in ribosomal biogenesis and performance. Nucleic Acids Research, 49(19), 11197-11210.
Koren, S. A., Hamm, M. J., Meier, S. E., Weiss, B. E., Nation, G. K., Chishti, E. A., Arango, J. P., Chen, J., Zhu, H., Blalock, E. M., & Abisambra, J. F. (2019). Tau drives translational selectivity by interacting with ribosomal proteins. Acta Neuropathologica, 137(4), 571-583.
SjöBerg, M. K., Shestakova, E., Mansuroglu, Z., Maccioni, R. B., & Bonnefoy, E. (2006). Tau protein binds to pericentromeric DNA: A putative role for nuclear tau in nucleolar organization. Journal of Cell Science, 119(Pt 10), 2025-2034.
Sivakumar, P., Nagashanmugam, K. B., Priyatharshni, S., Lavanya, R., Prabhu, N., & Ponnusamy, S. (2023). Review on the interactions between dopamine metabolites and alpha-Synuclein in causing Parkinson's disease. Neurochemistry International, 162, 105461.
Martin, G. (2000). Transcriptional infidelity in aging cells and its relevance for the Orgel hypothesis. Neurobiology of Aging, 21(6), 897-900. discussion 903-4.
Butzow, J. J., Mccool, M. G., & Eichhron, G. L. (1981). Does the capacity of ribosomes to control translation fidelity change with age? Mechanisms of Ageing and Development, 15(2), 203-216.
Mori, N., Hiruta, K., Funatsu, Y., & Goto, S. (1983). Codon recognition fidelity of ribosomes at the first and second positions does not decrease during aging. Mechanisms of Ageing and Development, 22(1), 1-10.
Goldstein, S., Wojtyk, R. I., Harley, C. B., Pollard, J. W., Chamberlain, J. W., & Stanners, C. P. (1985). Protein synthetic fidelity in aging human fibroblasts. Adv Exp Med Biol., 190, 495-508.
Harley, C. B., Pollard, J. W., Chamberlain, J. W., Stanners, C. P., & Goldstein, S. (1980). Protein synthetic errors do not increase during aging of cultured human fibroblasts. PNAS, 77(4), 1885-1889.
Luce, M. C., & Bunn, C. L. (1989). Decreased accuracy of protein synthesis in extracts from aging human diploid fibroblasts. Experimental Gerontology, 24(2), 113-125.
Lee, J. W., Beebe, K., Nangle, L. A., Jang, J., Longo-Guess, C. M., Cook, S. A., Davisson, M. T., Sundberg, J. P., Schimmel, P., & Ackerman, S. L. (2006). Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 443(7107), 50-55.
Martinez-Miguel, V. E., Lujan, C., Espie-Caullet, T., Martinez-Martinez, D., Moore, S., Backes, C., Gonzalez, S., Galimov, E. R., Brown, A. E. X., Halic, M., Tomita, K., Rallis, C., Von Der Haar, T., Cabreiro, F., & Bjedov, I. (2021). Increased fidelity of protein synthesis extends lifespan. Cell Metabolism, 33(11), 2288-2300.e12.
Shcherbakov, D., Nigri, M., Akbergenov, R., Brilkova, M., Mantovani, M., Petit, P. I., Grimm, A., Karol, A. A., Teo, Y., Sanchón, A. C., Kumar, Y., Eckert, A., Thiam, K., Seebeck, P., Wolfer, D. P., & Böttger, E. C. (2022). Premature aging in mice with error-prone protein synthesis. Science Advances, 8(9), eabl9051.
Brilkova, M., Nigri, M., Kumar, H. S., Moore, J., Mantovani, M., Keller, C., Grimm, A., Eckert, A., Shcherbakov, D., Akbergenov, R., Seebeck, P., Krämer, S. D., Wolfer, D. P., Gent, T. C., & Böttger, E. C. (2022). Error-prone protein synthesis recapitulates early symptoms of Alzheimer disease in aging mice. Cell reports, 40(13), 111433.
Karikkineth, A. C., Scheibye-Knudsen, M., Fivenson, E., Croteau, D. L., & Bohr, V. A. (2017). Cockayne syndrome: Clinical features, model systems and pathways. Ageing Research Reviews, 33, 3-17.
Laugel, V. (1993).Cockayne syndrome. In M. P. Adam, et al. (Eds.), GeneReviews((R)).
Assfalg, R., Alupei, M. C., Wagner, M., Koch, S., Gonzalez, O. G., Schelling, A., Scharffetter-Kochanek, K., & Iben, S. (2017). Cellular sensitivity to UV-irradiation is mediated by RNA polymerase I transcription. PLoS ONE, 12(6), e0179843.
Bradsher, J., Auriol, J., De Santis, L. P., Iben, S., Vonesch, J.-L., Grummt, I., & Egly, J.-M. (2002). CSB is a component of RNA pol I transcription. Molecular Cell, 10(4), 819-829.
Hoogstraten, D., Nigg, A. L., Heath, H., Mullenders, L. H. F., Van Driel, R., Hoeijmakers, J. H. J., Vermeulen, W., & Houtsmuller, A. B. (2002). Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Molecular Cell, 10(5), 1163-1174.
Iben, S., Tschochner, H., Bier, M., Hoogstraten, D., Hozák, P., Egly, J.-M., & Grummt, I. (2002). TFIIH plays an essential role in RNA polymerase I transcription. Cell, 109(3), 297-306.
Koch, S., Garcia Gonzalez, O., Assfalg, R., Schelling, A., Schäfer, P., Scharffetter-Kochanek, K., & Iben, S. (2014). Cockayne syndrome protein A is a transcription factor of RNA polymerase I and stimulates ribosomal biogenesis and growth. Cell Cycle, 13(13), 2029-2037.
Lebedev, A., Scharffetter-Kochanek, K., & Iben, S. (2008). Truncated Cockayne syndrome B protein represses elongation by RNA polymerase I. Journal of Molecular Biology, 382(2), 266-274.
Nonnekens, J., Perez-Fernandez, J., Theil, A. F., Gadal, O., Bonnart, C., & Giglia-Mari, G. (2013). Mutations in TFIIH causing trichothiodystrophy are responsible for defects in ribosomal RNA production and processing. Human Molecular Genetics, 22(14), 2881-2893.
Salas-Marco, J., & Bedwell, D. M. (2005). Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough. Journal of Molecular Biology, 348(4), 801-815.
Gonskikh, Y., Pecoraro, V., & Polacek, N. (2022). Mammalian in vitro translation systems. Methods in Molecular Biology, 2428, 101-111.
Penzo, M., Carnicelli, D., Montanaro, L., & Brigotti, M. (2016). A reconstituted cell-free assay for the evaluation of the intrinsic activity of purified human ribosomes. Nature Protocols, 11(7), 1309-1325.
Durose, J. B., Scheuner, D., Kaufman, R. J., Rothblum, L. I., & Niwa, M. (2009). Phosphorylation of eukaryotic translation initiation factor 2alpha coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Molecular and Cellular Biology, 29(15), 4295-4307.
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243-278.
Phan, T., Khalid, F., & Iben, S. (2019). Nucleolar and Ribosomal Dysfunction-ACommon Pathomechanism in Childhood Progerias? Cells, Jun 4, 8(6), 534.
Anisimova, A. S., Alexandrov, A. I., Makarova, N. E., Gladyshev, V. N., & Dmitriev, S. E. (2018). Protein synthesis and quality control in aging. Aging (Albany NY), 10(12), 4269-4288.
Gonskikh, Y., & Polacek, N. (2017). Alterations of the translation apparatus during aging and stress response. Mechanisms of Ageing and Development, 168, 30-36.
Tiku, V., & Antebi, A. (2018). Nucleolar function in lifespan regulation. Trends in Cell Biology, 28(8), 662-672.
Back, S. H. (2020). Roles of the translation initiation factor eIF2alpha phosphorylation in cell structure and function. Cell Structure and Function, 45(1), 65-76.
Waldera-Lupa, D. M., Kalfalah, F., Florea, A.-M., Sass, S., Kruse, F., Rieder, V., Tigges, J., Fritsche, E., Krutmann, J., Busch, H., Boerries, M., Meyer, H. E., Boege, F., Theis, F., Reifenberger, G., & Stuhler, K. (2014). Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts. Aging (Albany NY), 6(10), 856-872.
Stein, K. C., Morales-Polanco, F., Van Der Lienden, J., Rainbolt, T. K., & Frydman, J. (2022). Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature, 601(7894), 637-642.
Kaushik, S., Tasset, I., Arias, E., Pampliega, O., Wong, E., Martinez-Vicente, M., & Cuervo, A. M. (2021). Autophagy and the hallmarks of aging. Ageing Research Reviews, 72, 101468.
Vo, M.-N., Terrey, M., Lee, J. W., Roy, B., Moresco, J. J., Sun, L., Fu, H., Liu, Q., Weber, T. G., Yates, J. R., Fredrick, K., Schimmel, P., & Ackerman, S. L. (2018). ANKRD16 prevents neuron loss caused by an editing-defective tRNA synthetase. Nature, 557(7706), 510-515.
Ke, Z., Mallik, P., Johnson, A. B., Luna, F., Nevo, E., Zhang, Z. D., Gladyshev, V. N., Seluanov, A., & Gorbunova, V. (2017). Translation fidelity coevolves with longevity. Aging Cell, 16(5), 988-993.
Botta, E., Theil, A. F., Raams, A., Caligiuri, G., Giachetti, S., Bione, S., Accadia, M., Lombardi, A., Smith, D. E. C., Mendes, M. I., Swagemakers, S. M. A., Van Der Spek, P. J., Salomons, G. S., Hoeijmakers, J. H. J., Yesodharan, D., Nampoothiri, S., Ogi, T., Lehmann, A. R., Orioli, D., & Vermeulen, W. (2021). Protein instability associated with AARS1 and MARS1 mutations causes trichothiodystrophy. Human Molecular Genetics, 30(18), 1711-1720.
Theil, A. F., Botta, E., Raams, A., Smith, D. E. C., Mendes, M. I., Caligiuri, G., Giachetti, S., Bione, S., Carriero, R., Liberi, G., Zardoni, L., Swagemakers, S. M. A., Salomons, G. S., Sarasin, A., Lehmann, A., Van Der Spek, P. J., Ogi, T., Hoeijmakers, J. H. J., Vermeulen, W., & Orioli, D. (2019). Bi-allelic TARS mutations are associated with brittle hair phenotype. American Journal of Human Genetics, 105(2), 434-440.
Graifer, D., & Karpova, G. (2021). Eukaryotic protein uS19: A component of the decoding site of ribosomes and a player in human diseases. Biochemical Journal, 478(5), 997-1008.
Bretones, G., Álvarez, M. G., Arango, J. R., Rodríguez, D., Nadeu, F., Prado, M. A., Valdés-Mas, R., Puente, D. A., Paulo, J. A., Delgado, J., Villamor, N., López-Guillermo, A., Finley, D. J., Gygi, S. P., Campo, E., Quesada, V., & López-Otín, C. (2018). Altered patterns of global protein synthesis and translational fidelity in RPS15-mutated chronic lymphocytic leukemia. Blood, 132(22), 2375-2388.
Martin, I., Kim, J. W., Lee, B. D., Kang, H. C., Xu, J.-C., Jia, H., Stankowski, J., Kim, M.-S., Zhong, J., Kumar, M., Andrabi, S. A., Xiong, Y., Dickson, D. W., Wszolek, Z. K., Pandey, A., Dawson, T. M., & Dawson, V. L. (2014). Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell, 157(2), 472-485.
Daher, J. P. L., Volpicelli-Daley, L. A., Blackburn, J. P., Moehle, M. S., & West, A. B. (2014). Abrogation of alpha-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proceedings of National Academy of Sciences USA, 111(25), 9289-9294.
Delenclos, M., Burgess, J. D., Lamprokostopoulou, A., Outeiro, T. F., Vekrellis, K., & Mclean, P. J. (2019). Cellular models of alpha-synuclein toxicity and aggregation. Journal of Neurochemistry, 150(5), 566-576.
Albanese, F., Novello, S., & Morari, M. (2019). Autophagy and LRRK2 in the aging brain. Frontiers in Neuroscience, 13, 1352.
Mordret, E., Dahan, O., Asraf, O., Rak, R., Yehonadav, A., Barnabas, G. D., Cox, J., Geiger, T., Lindner, A. B., & Pilpel, Y. (2019). Systematic detection of amino acid substitutions in proteomes reveals mechanistic basis of ribosome errors and selection for translation fidelity. Molecular Cell, 75(3), 427-441.e5 e5.
Azpurua, J., Ke, Z., Chen, I. X., Zhang, Q., Ermolenko, D. N., Zhang, Z. D., Gorbunova, V., & Seluanov, A. (2013). Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. Proceedings of National Academy of Science USA, 110(43), 17350-17355.
Stefanini, M., Botta, E., Lanzafame, M., & Orioli, D. (2010). Trichothiodystrophy: From basic mechanisms to clinical implications. DNA Repair, 9(1), 2-10.
Carubbi, F., Guicciardi, M. E., Concari, M., Loria, P., Bertolotti, M., & Carulli, N. (2002). Comparative cytotoxic and cytoprotective effects of taurohyodeoxycholic acid (THDCA) and tauroursodeoxycholic acid (TUDCA) in HepG2 cell line. Biochimica et Biophysica Acta, 1580(1), 31-39.
Cortez, L., & Sim, V. (2014). The therapeutic potential of chemical chaperones in protein folding diseases. Prion, 8(2), 197-202.
Utili, R., Adinolfi, L. E., & Tripodi, M. F. (1995). Therapeutic index of taurocholate or tauroursodeoxycholate in experimental drug-induced cholestasis. Italian Journal of Gastroenterology, 27(6), 332-334.

Auteurs

Sebastian Iben (S)

Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH