Minimally Invasive Intracerebral Hemorrhage Evacuation Improves Pericavity Cerebral Blood Volume.

Cerebral blood volume Cone-beam CT Hemorrhagic stroke Intracerebral hemorrhage Minimally invasive surgery Pericavity blood volume

Journal

Translational stroke research
ISSN: 1868-601X
Titre abrégé: Transl Stroke Res
Pays: United States
ID NLM: 101517297

Informations de publication

Date de publication:
17 May 2023
Historique:
received: 29 01 2023
accepted: 02 05 2023
revised: 18 04 2023
medline: 17 5 2023
pubmed: 17 5 2023
entrez: 17 5 2023
Statut: aheadofprint

Résumé

Cerebral blood volume mapping can characterize hemodynamic changes within brain tissue, particularly after stroke. This study aims to quantify blood volume changes in the perihematomal parenchyma and pericavity parenchyma after minimally invasive intracerebral hemorrhage evacuation (MIS for ICH). Thirty-two patients underwent MIS for ICH with pre- and post-operative CT imaging and intraoperative perfusion imaging (DynaCT PBV Neuro, Artis Q, Siemens). The pre-operative and post-operative CT scans were segmented using ITK-SNAP software to calculate hematoma volumes and to delineate the pericavity tissue. Helical CT segmentations were registered to cone beam CT data using elastix software. Mean blood volumes were computed inside subvolumes by dilating the segmentations at increasing distances from the lesion. Pre-operative perihematomal blood volumes and post-operative pericavity blood volumes (PBV) were compared. In 27 patients with complete imaging, post-operative PBV significantly increased within the 6-mm pericavity region after MIS for ICH. The mean relative PBV increased by 21.6 and 9.1% at 3 mm and 6 mm, respectively (P = 0.001 and 0.016, respectively). At the 9-mm pericavity region, there was a 2.83% increase in mean relative PBV, though no longer statistically significant. PBV analysis demonstrated a significant increase in pericavity cerebral blood volume after minimally invasive ICH evacuation to a distance of 6 mm from the border of the lesion.

Identifiants

pubmed: 37195548
doi: 10.1007/s12975-023-01155-3
pii: 10.1007/s12975-023-01155-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, et al. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke. 2022;53:e282–361.
doi: 10.1161/STR.0000000000000407 pubmed: 35579034
Olivot J-M, Mlynash M, Kleinman JT, Straka M, Venkatasubramanian C, Bammer R, et al. MRI profile of the perihematomal region in acute intracerebral hemorrhage. Stroke. 2010;41:2681–3.
doi: 10.1161/STROKEAHA.110.590638 pubmed: 20947849 pmcid: 3357921
Herweh C, Jüttler E, Schellinger PD, Klotz E, Schramm P. Perfusion CT in hyperacute cerebral hemorrhage within 3 hours after symptom onset: is there an early perihemorrhagic penumbra? J Neuroimaging. 2010;20:350–3.
doi: 10.1111/j.1552-6569.2009.00408.x pubmed: 19686316
Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.
doi: 10.1016/S1474-4422(05)70283-0 pubmed: 16361023
Etminan N, Beseoglu K, Turowski B, Steiger H-J, Hänggi D. Perfusion CT in patients with spontaneous lobar intracerebral hemorrhage: effect of surgery on perihemorrhagic perfusion. Stroke. 2012;43:759–63.
doi: 10.1161/STROKEAHA.111.616730 pubmed: 22198980
Horowitz ME, Ali M, Chartrain AG, Allen OS, Scaggiante J, Glassberg B, et al. Definition and time course of pericavity edema after minimally invasive endoscopic intracerebral hemorrhage evacuation. J Neurointerv Surg. 2022;14:149–54.
doi: 10.1136/neurintsurg-2020-017077 pubmed: 33722960
Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–34.
doi: 10.1161/STROKEAHA.111.000411 pubmed: 23391763 pmcid: 4124642
Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Strother CM, Kalender WA, et al. Flat detector CT in the evaluation of brain parenchyma, intracranial vasculature, and cerebral blood volume: a pilot study in patients with acute symptoms of cerebral ischemia. AJNR Am J Neuroradiol. 2010;31:1462–9.
doi: 10.3174/ajnr.A2083 pubmed: 20378700 pmcid: 7966101
Fiorella D, Turk A, Chaudry I, Turner R, Dunkin J, Roque C, et al. A prospective, multicenter pilot study investigating the utility of flat detector derived parenchymal blood volume maps to estimate cerebral blood volume in stroke patients. J Neurointerv Surg. 2014;6:451–6.
doi: 10.1136/neurintsurg-2013-010840 pubmed: 23943817
Hung S-C, Lin C-J, Guo W-Y, Chang F-C, Luo C-B, Teng MM-H, et al. Toward the era of a one-stop imaging service using an angiography suite for neurovascular disorders. Biomed Res Int. 2013;2013:873614.
doi: 10.1155/2013/873614 pubmed: 23762863 pmcid: 3666363
Kamran M, Nagaraja S, Byrne JV. C-arm flat detector computed tomography: the technique and its applications in interventional neuro-radiology. Neuroradiology. 2010;52:319–27.
doi: 10.1007/s00234-009-0609-5 pubmed: 19859702
Kellner CP, Chartrain AG, Nistal DA, Scaggiante J, Hom D, Ghatan S, et al. The Stereotactic Intracerebral Hemorrhage Underwater Blood Aspiration (SCUBA) technique for minimally invasive endoscopic intracerebral hemorrhage evacuation. J Neurointerv Surg. 2018;10:771–6.
doi: 10.1136/neurintsurg-2017-013719 pubmed: 29572265 pmcid: 6278654
Bley T, Strother CM, Pulfer K, Royalty K, Zellerhoff M, Deuerling-Zheng Y, et al. C-arm CT measurement of cerebral blood volume in ischemic stroke: an experimental study in canines. AJNR Am J Neuroradiol. 2010;31:536–40.
doi: 10.3174/ajnr.A1851 pubmed: 20053809 pmcid: 7963973
Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Boese J, Zellerhoff M, et al. Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT. Eur Radiol. 2011;21:882–9.
doi: 10.1007/s00330-010-1957-6 pubmed: 20857117
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31:1116–28.
doi: 10.1016/j.neuroimage.2006.01.015 pubmed: 16545965
Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205.
doi: 10.1109/TMI.2009.2035616 pubmed: 19923044
Haralick RM, Sternberg SR, Zhuang X. Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell. 1987;9:532–50.
doi: 10.1109/TPAMI.1987.4767941 pubmed: 21869411
Fainardi E, Borrelli M, Saletti A, Schivalocchi R, Azzini C, Cavallo M, et al. CT perfusion mapping of hemodynamic disturbances associated to acute spontaneous intracerebral hemorrhage. Neuroradiology. 2008;50:729–40.
doi: 10.1007/s00234-008-0402-x pubmed: 18504564
Hatazawa J, Shimosegawa E, Toyoshima H, Ardekani BA, Suzuki A, Okudera T, et al. Cerebral blood volume in acute brain infarction: a combined study with dynamic susceptibility contrast MRI and 99mTc-HMPAO-SPECT. Stroke. 1999;30:800–6.
doi: 10.1161/01.STR.30.4.800 pubmed: 10187882
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.
doi: 10.1016/S1474-4422(12)70104-7 pubmed: 22698888
Morotti A, Busto G, Bernardoni A, Marini S, Casetta I, Fainardi E. Association between perihematomal perfusion and intracerebral hemorrhage outcome. Neurocrit Care. 2020;33:525–32.
doi: 10.1007/s12028-020-00929-z pubmed: 32043266
Tobieson L, Rossitti S, Zsigmond P, Hillman J, Marklund N. Persistent metabolic disturbance in the perihemorrhagic zone despite a normalized cerebral blood flow following surgery for intracerebral hemorrhage. Neurosurgery. 2019;84:1269–79.
doi: 10.1093/neuros/nyy179 pubmed: 29788388
Butcher KS, Jeerakathil T, Hill M, Demchuk AM, Dowlatshahi D, Coutts SB, et al. The intracerebral hemorrhage acutely decreasing arterial pressure trial. Stroke. 2013;44:620–6.
doi: 10.1161/STROKEAHA.111.000188 pubmed: 23391776
Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, et al. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology. 1999;210:519–27.
doi: 10.1148/radiology.210.2.r99fe06519 pubmed: 10207439

Auteurs

Colton J Smith (CJ)

Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Christina P Rossitto (CP)

Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Michael Manhart (M)

Siemens Healthcare, Erlangen, Germany.

Imke Fuhrmann (I)

Siemens Healthcare, Erlangen, Germany.

Julie DiNitto (J)

Siemens Healthcare, Erlangen, Germany.

Turner Baker (T)

Sinai BioDesign, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Muhammad Ali (M)

Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Marily Sarmiento (M)

Siemens Healthcare, Erlangen, Germany.

J Mocco (J)

Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Christopher P Kellner (CP)

Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. christopher.kellner@mountsinai.org.

Classifications MeSH