Investigation and benchmarking of U-Nets on prostate segmentation tasks.
Automatic prostate segmentation
Comparison framework
Medical imaging
U-net variations
Journal
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
ISSN: 1879-0771
Titre abrégé: Comput Med Imaging Graph
Pays: United States
ID NLM: 8806104
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
received:
30
11
2022
revised:
03
05
2023
accepted:
03
05
2023
medline:
5
6
2023
pubmed:
19
5
2023
entrez:
18
5
2023
Statut:
ppublish
Résumé
In healthcare, a growing number of physicians and support staff are striving to facilitate personalized radiotherapy regimens for patients with prostate cancer. This is because individual patient biology is unique, and employing a single approach for all is inefficient. A crucial step for customizing radiotherapy planning and gaining fundamental information about the disease, is the identification and delineation of targeted structures. However, accurate biomedical image segmentation is time-consuming, requires considerable experience and is prone to observer variability. In the past decade, the use of deep learning models has significantly increased in the field of medical image segmentation. At present, a vast number of anatomical structures can be demarcated on a clinician's level with deep learning models. These models would not only unload work, but they can offer unbiased characterization of the disease. The main architectures used in segmentation are the U-Net and its variants, that exhibit outstanding performances. However, reproducing results or directly comparing methods is often limited by closed source of data and the large heterogeneity among medical images. With this in mind, our intention is to provide a reliable source for assessing deep learning models. As an example, we chose the challenging task of delineating the prostate gland in multi-modal images. First, this paper provides a comprehensive review of current state-of-the-art convolutional neural networks for 3D prostate segmentation. Second, utilizing public and in-house CT and MR datasets of varying properties, we created a framework for an objective comparison of automatic prostate segmentation algorithms. The framework was used for rigorous evaluations of the models, highlighting their strengths and weaknesses.
Identifiants
pubmed: 37201475
pii: S0895-6111(23)00059-9
doi: 10.1016/j.compmedimag.2023.102241
pii:
doi:
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
102241Informations de copyright
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.