Brain morphometry in older adults with and without dementia using extremely rapid structural scans.
ADNI
Aging
Alzheimer's disease
Frontotemporal lobar degeneration
Hippocampus
MRI
Journal
NeuroImage
ISSN: 1095-9572
Titre abrégé: Neuroimage
Pays: United States
ID NLM: 9215515
Informations de publication
Date de publication:
01 08 2023
01 08 2023
Historique:
received:
20
02
2023
revised:
25
04
2023
accepted:
15
05
2023
medline:
26
6
2023
pubmed:
19
5
2023
entrez:
18
5
2023
Statut:
ppublish
Résumé
T1-weighted structural MRI is widely used to measure brain morphometry (e.g., cortical thickness and subcortical volumes). Accelerated scans as fast as one minute or less are now available but it is unclear if they are adequate for quantitative morphometry. Here we compared the measurement properties of a widely adopted 1.0 mm resolution scan from the Alzheimer's Disease Neuroimaging Initiative (ADNI = 5'12'') with two variants of highly accelerated 1.0 mm scans (compressed-sensing, CSx6 = 1'12''; and wave-controlled aliasing in parallel imaging, WAVEx9 = 1'09'') in a test-retest study of 37 older adults aged 54 to 86 (including 19 individuals diagnosed with a neurodegenerative dementia). Rapid scans produced highly reliable morphometric measures that largely matched the quality of morphometrics derived from the ADNI scan. Regions of lower reliability and relative divergence between ADNI and rapid scan alternatives tended to occur in midline regions and regions with susceptibility-induced artifacts. Critically, the rapid scans yielded morphometric measures similar to the ADNI scan in regions of high atrophy. The results converge to suggest that, for many current uses, extremely rapid scans can replace longer scans. As a final test, we explored the possibility of a 0'49'' 1.2 mm CSx6 structural scan, which also showed promise. Rapid structural scans may benefit MRI studies by shortening the scan session and reducing cost, minimizing opportunity for movement, creating room for additional scan sequences, and allowing for the repetition of structural scans to increase precision of the estimates.
Identifiants
pubmed: 37201641
pii: S1053-8119(23)00324-5
doi: 10.1016/j.neuroimage.2023.120173
pmc: PMC10330834
mid: NIHMS1910689
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
120173Subventions
Organisme : NIDCD NIH HHS
ID : R01 DC014296
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG067420
Pays : United States
Organisme : NIA NIH HHS
ID : K00 AG068432
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG062421
Pays : United States
Organisme : NIH HHS
ID : S10 OD020039
Pays : United States
Informations de copyright
Copyright © 2023. Published by Elsevier Inc.
Déclaration de conflit d'intérêts
Declaration of Competing Interest Tom Hilbert and Tobias Kober are employed by Siemens Healthineers International AG, Switzerland. The authors have no other conflicts of interest to report.
Références
Neurology. 2011 Mar 15;76(11):1006-14
pubmed: 21325651
Cereb Cortex. 2004 Jan;14(1):11-22
pubmed: 14654453
Neuron. 2017 Aug 16;95(4):791-807.e7
pubmed: 28757305
Cereb Cortex. 2004 Jul;14(7):721-30
pubmed: 15054051
Neuroimage. 2004 Jul;22(3):1060-75
pubmed: 15219578
Neuroimage. 2015 Jan 15;105:473-85
pubmed: 25449739
Neuroimage. 2019 Jan 15;185:335-348
pubmed: 30332613
Alzheimers Dement. 2017 May;13(5):561-571
pubmed: 27931796
Magn Reson Med. 2002 Jun;47(6):1202-10
pubmed: 12111967
Alzheimers Dement. 2020 Jan;16(1):106-117
pubmed: 31914218
Elife. 2020 Mar 05;9:
pubmed: 32134384
Alzheimers Dement. 2015 Jul;11(7):740-56
pubmed: 26194310
Hum Brain Mapp. 2021 Feb 1;42(2):539-550
pubmed: 33058385
Magn Reson Med. 2015 Jun;73(6):2152-62
pubmed: 24986223
Magn Reson Med. 2018 Jan;79(1):401-406
pubmed: 28220617
Magn Reson Med. 2007 Dec;58(6):1182-95
pubmed: 17969013
Brain. 2011 Sep;134(Pt 9):2456-77
pubmed: 21810890
Alzheimers Dement (Amst). 2021 Jul 05;13(1):e12197
pubmed: 34258377
Alzheimers Dement. 2019 Jan;15(1):106-152
pubmed: 30321505
Brain. 2017 Feb;140(2):457-471
pubmed: 28040670
Cold Spring Harb Perspect Med. 2012 Apr;2(4):a006213
pubmed: 22474610
Front Aging Neurosci. 2013 Oct 11;5:55
pubmed: 24130528
Neurobiol Aging. 2016 Oct;46:32-42
pubmed: 27460147
Neuroimage. 2018 Feb 15;167:104-120
pubmed: 29155184
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17648-53
pubmed: 25422429
Nat Neurosci. 2016 Nov;19(11):1523-1536
pubmed: 27643430
Nat Rev Neurol. 2010 Feb;6(2):67-77
pubmed: 20139996
Sci Rep. 2021 Jan 18;11(1):1673
pubmed: 33462321
Nature. 2022 Apr;604(7906):525-533
pubmed: 35388223
J Magn Reson Imaging. 2014 Jul;40(1):181-91
pubmed: 24395184
Mol Psychiatry. 2021 Jan;26(1):296-308
pubmed: 32251378
Neuroimage. 2020 Sep;218:116956
pubmed: 32470572
Mol Psychiatry. 2016 Apr;21(4):547-53
pubmed: 26033243
Lancet Neurol. 2013 Feb;12(2):207-16
pubmed: 23332364
Neurology. 1998 Dec;51(6):1546-54
pubmed: 9855500
Magn Reson Med. 1999 Nov;42(5):952-62
pubmed: 10542355
J Neurosci. 2011 Aug 10;31(32):11597-616
pubmed: 21832190
Ageing Res Rev. 2016 Sep;30:25-48
pubmed: 26827786
Neuroimage. 2008 Jan 1;39(1):10-8
pubmed: 17942325
Neuroimage. 2014 Apr 15;90:60-73
pubmed: 24345388
Neurology. 2011 Apr 19;76(16):1395-402
pubmed: 21490323
J Neurosci. 2022 Jul 20;42(29):5681-5694
pubmed: 35705486
Nat Rev Neurol. 2022 Jul;18(7):389-399
pubmed: 35379951
Neuroimage. 1999 Feb;9(2):179-94
pubmed: 9931268
Cereb Cortex. 2005 Nov;15(11):1676-89
pubmed: 15703252
Neurology. 2014 Nov 18;83(21):1936-44
pubmed: 25344382
J Pers Soc Psychol. 2004 Jan;86(1):96-111
pubmed: 14717630
N Engl J Med. 2023 Jan 5;388(1):9-21
pubmed: 36449413
Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4398-403
pubmed: 10716738
Neuroimage. 2009 May 15;46(1):177-92
pubmed: 19233293
Neuroimage. 2008 Apr 1;40(2):559-569
pubmed: 18242102
Neuroimage. 2015 Feb 15;107:107-115
pubmed: 25498430
Neuroimage. 2006 Jul 1;31(3):968-80
pubmed: 16530430
Magn Reson Med. 2006 Jul;56(1):216-23
pubmed: 16767762
Cereb Cortex. 2013 Nov;23(11):2521-30
pubmed: 22892423
Neurobiol Aging. 2009 Nov;30(11):1711-23
pubmed: 18346820
Mol Psychiatry. 2016 Jun;21(6):806-12
pubmed: 26122586
Neuroimage. 2013 Apr 15;70:122-31
pubmed: 23261638
PLoS One. 2017 Sep 25;12(9):e0184661
pubmed: 28945803
Hum Brain Mapp. 2016 Jul;37(7):2385-97
pubmed: 27004471
Neuroimage. 2020 Mar;208:116450
pubmed: 31821869
Brain. 2022 Nov 21;145(11):4080-4096
pubmed: 35731122
Neuroimage. 2010 Jun;51(2):501-11
pubmed: 20298790
Neurology. 2020 Jul 14;95(2):e140-e154
pubmed: 32591470
Neuroimage. 2006 Aug 1;32(1):180-94
pubmed: 16651008
Neuroimage. 2015 Jun;113:184-95
pubmed: 25776214
Invest Radiol. 2016 Jun;51(6):349-64
pubmed: 27003227
Magn Reson Med. 2020 Oct;84(4):1881-1894
pubmed: 32176826
Neuroimage. 2009 Feb 15;44(4):1324-33
pubmed: 19038349
Sci Adv. 2023 Feb 3;9(5):eadd3607
pubmed: 36724222
Hippocampus. 2009 Jun;19(6):549-57
pubmed: 19405131
Neuroimage. 2004 Oct;23(2):724-38
pubmed: 15488422
Insights Imaging. 2018 Dec;9(6):1107-1115
pubmed: 30411279
Neuron. 2002 Jan 31;33(3):341-55
pubmed: 11832223
MAGMA. 2021 Aug;34(4):487-497
pubmed: 33502667
Neuroimage. 2013 Dec;83:550-8
pubmed: 23747458
Cereb Cortex. 2009 Mar;19(3):497-510
pubmed: 18632739
Neuroimage. 1999 Feb;9(2):195-207
pubmed: 9931269