Electrochemical platform based on molecularly imprinted polymer with zinc oxide nanoparticles and multiwalled carbon nanotubes modified screen-printed carbon electrode for amaranth determination.
Amaranth
Molecularly imprinted polymelamine
Pharmaceutical samples
Screen-printed carbon electrode; Differential pulse voltammetry
Water samples
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
19 May 2023
19 May 2023
Historique:
received:
16
02
2023
accepted:
21
04
2023
medline:
19
5
2023
pubmed:
19
5
2023
entrez:
19
5
2023
Statut:
epublish
Résumé
A novel electrochemical platform for amaranth determination has been developed using a rapid, easy, inexpensive, and portable molecularly imprinted polymer technique. The MIP platform was fabricated by electropolymerizing melamine as monomer in the presence of amaranth as template on the surface of ZnO-MWCNT/SPCE. Then, amaranth was completely eluted, leaving imprinted cavities in the polymeric film that could effectively recognize amaranth in solution. The electrochemical platform based on a molecularly imprinted polymelamine was analyzed by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Under optimum conditions, the developed MIP/ZnO-MWCNT/SPCE platform can be properly used for amaranth determination, with high sensitivity of 96.2 µA µM cm
Identifiants
pubmed: 37204551
doi: 10.1007/s00604-023-05811-1
pii: 10.1007/s00604-023-05811-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
229Subventions
Organisme : Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
ID : PN-III-P4-ID-PCE-2020-0059
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Pogacean F, Rosu M-C, Coros M et al (2018) Graphene/TiO
doi: 10.1149/2.0101808jes
Mohammadzadeh JP, Aflatoonian MR, AbbasiRayeni R et al (2022) Graphite carbon nitride-modified screen-printed electrode as a highly sensitive and selective sensor for detection of amaranth. Food Chem Toxicol 163:112962. https://doi.org/10.1016/j.fct.2022.112962
doi: 10.1016/j.fct.2022.112962
Gao Y, Li H, Tong J, Wang L (2021) A new voltammetric sensor based on poly(L-cysteine)/GR composite film modified electrode for the sensitive determination of amaranth in wastewater. Environ Technol 42:2385–2390. https://doi.org/10.1080/09593330.2019.1701569
doi: 10.1080/09593330.2019.1701569
pubmed: 31823678
Beitollahi H, Garkani Nejad F, Dourandish Z, Tajik S (2022) A novel voltammetric amaranth sensor based on screen printed electrode modified with polypyrrole nanotubes. Environ Res 214:113725. https://doi.org/10.1016/j.envres.2022.113725
doi: 10.1016/j.envres.2022.113725
pubmed: 35732202
Wu Y, Li G, Tian Y et al (2021) Electropolymerization of molecularly imprinted polypyrrole film on multiwalled carbon nanotube surface for highly selective and stable determination of carcinogenic amaranth. J Electroanal Chem 895:115494. https://doi.org/10.1016/j.jelechem.2021.115494
doi: 10.1016/j.jelechem.2021.115494
Alizadeh M, Demir E, Aydogdu N et al (2022) Recent advantages in electrochemical monitoring for the analysis of amaranth and carminic acid as food color. Food Chem Toxicol 163:112929. https://doi.org/10.1016/j.fct.2022.112929
doi: 10.1016/j.fct.2022.112929
pubmed: 35307455
Tang TX, Xu XJ, Wang DM et al (2015) A rapid and green limit test method for five synthetic colorants in foods using polyamide thin-layer chromatography. Food Anal Methods 8:459–466. https://doi.org/10.1007/s12161-014-9907-6
doi: 10.1007/s12161-014-9907-6
Wu H, Guo JB, Du LM et al (2013) A rapid shaking-based ionic liquid dispersive liquid phase microextraction for the simultaneous determination of six synthetic food colourants in soft drinks, sugar- and gelatin-based confectionery by high-performance liquid chromatography. Food Chem 141:182–186. https://doi.org/10.1016/j.foodchem.2013.03.015
doi: 10.1016/j.foodchem.2013.03.015
pubmed: 23768345
Sha O, Zhu X (2015) Simultaneous ionic liquid aqueous two-phase extraction and spectrophotometric determination of amaranth and brilliant blue in food samples. J Anal Chem 70:558–565. https://doi.org/10.1134/S1061934815050123
doi: 10.1134/S1061934815050123
Martin F, Oberson JM, Meschiari M, Munari C (2016) Determination of 18 water-soluble artificial dyes by LC-MS in selected matrices. Food Chem 197:1249–1255. https://doi.org/10.1016/j.foodchem.2015.11.067
doi: 10.1016/j.foodchem.2015.11.067
pubmed: 26675864
Feng J, Li J, Huang W et al (2021) Capillary zone electrophoresis determination of five trace food additives in beverage samples using counterflow transient isotachophoresis. Food Anal Methods 14:380–388. https://doi.org/10.1007/s12161-020-01894-1
doi: 10.1007/s12161-020-01894-1
Khosrokhavar R, Motaharian A, Milani Hosseini MR, Mohammadsadegh S (2020) Screen-printed carbon electrode (SPCE) modified by molecularly imprinted polymer (MIP) nanoparticles and graphene nanosheets for determination of sertraline antidepressant drug. Microchem J 159:105348. https://doi.org/10.1016/j.microc.2020.105348
doi: 10.1016/j.microc.2020.105348
Ayankojo AG, Reut J, Ciocan V et al (2020) Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 209:120502. https://doi.org/10.1016/j.talanta.2019.120502
doi: 10.1016/j.talanta.2019.120502
pubmed: 31892030
Afzali Z, Mohadesi A, Ali Karimi M, Fathirad F (2022) A highly selective and sensitive electrochemical sensor based on graphene oxide and molecularly imprinted polymer magnetic nanocomposite for patulin determination. Microchem J 177:107215. https://doi.org/10.1016/j.microc.2022.107215
doi: 10.1016/j.microc.2022.107215
Prabhu K, Malode SJ, Shetti NP, Kulkarni RM (2022) Analysis of herbicide and its applications through a sensitive electrochemical technique based on MWCNTs/ZnO/CPE fabricated sensor. Chemosphere 287:132086. https://doi.org/10.1016/j.chemosphere.2021.132086
doi: 10.1016/j.chemosphere.2021.132086
pubmed: 34523434
Fathirad F, Afzali D, Mostafavi A et al (2013) Fabrication of a new carbon paste electrode modified with multi-walled carbon nanotube for stripping voltammetric determination of bismuth(III). Electrochim Acta 103:206–210. https://doi.org/10.1016/j.electacta.2013.03.162
doi: 10.1016/j.electacta.2013.03.162
Afzali D, Padash M, Fathirad F, Mostafavi A (2015) Determination of trace amounts of antimony(III) based on differential pulse voltammetric method with multi-walled carbon-nanotube-modified carbon paste electrode. Ionics 21:565–570. https://doi.org/10.1007/s11581-014-1200-6
doi: 10.1007/s11581-014-1200-6
Afzali D, Fathirad F, Ghaseminezhad S (2016) Determination of trace amounts of ochratoxin A in different food samples based on gold nanoparticles modified carbon paste electrode. J Food Sci Technol 53:909–914. https://doi.org/10.1007/s13197-015-2016-8
doi: 10.1007/s13197-015-2016-8
pubmed: 26788015
Afzali D, Zarei S, Fathirad F, Mostafavi A (2014) Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol. Mater Sci Eng C 43:97–101. https://doi.org/10.1016/j.msec.2014.06.035
doi: 10.1016/j.msec.2014.06.035
Shukla SK, Kushwaha CS, Singh NB (2017) Recent developments in conducting polymer based composites for sensing devices. Mater Today: Proc 5672–5681. https://doi.org/10.1016/j.matpr.2017.06.029
Naveen MH, Gurudatt NG, Shim YB (2017) Applications of conducting polymer composites to electrochemical sensors: a review. Appl Mater Today 9:419–433
doi: 10.1016/j.apmt.2017.09.001
Afzali D, Fathirad F (2016) Determination of zearalenone with a glassy carbon electrode modified with nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid. Microchim Acta 183:2633–2638. https://doi.org/10.1007/s00604-016-1907-3
doi: 10.1007/s00604-016-1907-3
Fathirad F, Mostafavi A, Afzali D (2017) Conductive polymeric ionic liquid/Fe
doi: 10.5740/jaoacint.16-0216
pubmed: 28118570
Kumar N, Goyal RN (2020) Simultaneous determination of melatonin and 5-hydroxytrptophan at the disposable poly-(melamine)/poly-(o-aminophenol) composite modified screen printed sensor. J Electroanal Chem 874:114458. https://doi.org/10.1016/j.jelechem.2020.114458
doi: 10.1016/j.jelechem.2020.114458
Mostafiz B, Bigdeli SA, Banan K et al (2021) Molecularly imprinted polymer-carbon paste electrode (MIP-CPE)-based sensors for the sensitive detection of organic and inorganic environmental pollutants: a review. Trends Environ Anal Chem 32:e00144
doi: 10.1016/j.teac.2021.e00144
Ahmad OS, Bedwell TS, Esen C et al (2019) Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol 37:294–309
doi: 10.1016/j.tibtech.2018.08.009
pubmed: 30241923
Chen L, Wang X, Lu W et al (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211
doi: 10.1039/C6CS00061D
pubmed: 26936282
Wu S, Yin ZZ, Chen X et al (2020) Electropolymerized melamine for simultaneous determination of nitrite and tartrazine. Food Chem 333:127532. https://doi.org/10.1016/j.foodchem.2020.127532
doi: 10.1016/j.foodchem.2020.127532
pubmed: 32668396
Fanjul-Bolado P, Queipo P, Lamas-Ardisana PJ, Costa-García A (2007) Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Talanta 74:427–433. https://doi.org/10.1016/j.talanta.2007.07.035
doi: 10.1016/j.talanta.2007.07.035
pubmed: 18371659
Cao Q, Zhao H, Zeng L et al (2009) Electrochemical determination of melamine using oligonucleotides modified gold electrodes. Talanta 80:484–488. https://doi.org/10.1016/j.talanta.2009.07.006
doi: 10.1016/j.talanta.2009.07.006
pubmed: 19836508
Liu X, Cao L, Song W et al (2011) Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 3:2944–2952. https://doi.org/10.1021/am200737b
doi: 10.1021/am200737b
pubmed: 21728327
Zanello P (2003) Inorganic electrochemistry theory, practice and application. The Royal Society of Chemistry
doi: 10.1039/9781847551146
Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical methods, Wiley 2:580–632
He Q, Liu J, Liu X et al (2018) Manganese dioxide nanorods/electrochemically reduced graphene oxide nanocomposites modified electrodes for cost-effective and ultrasensitive detection of amaranth. Colloids Surf B Biointerfaces 172:565–572. https://doi.org/10.1016/j.colsurfb.2018.09.005
doi: 10.1016/j.colsurfb.2018.09.005
pubmed: 30218982
Jing S, Zheng H, Zhao L et al (2017) Electrochemical sensor based on poly(sodium 4-styrenesulfonate) functionalized graphene and Co
doi: 10.1007/s12161-017-0889-z
Gosser DK Jr (1993) Cyclic voltammetry, simulation and analysis of reaction mechanisms. VCH Publisher, New York
Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interf Electrochem 101:19–28
doi: 10.1016/S0022-0728(79)80075-3
Akbari S (2022) A new voltammetric sensor according to graphene quantum dots/ionic liquid modified carbon paste electrode for amaranth sensitive determination. Int J Environ Anal Chem 102:789–803. https://doi.org/10.1080/03067319.2020.1726338
doi: 10.1080/03067319.2020.1726338
Nuñez-Dallos N, Macías MA, García-Beltrán O et al (2018) Voltammetric determination of amaranth and tartrazine with a new double-stranded copper(I) helicate-single-walled carbon nanotube modified screen printed electrode. J Electroanal Chem 822:95–104. https://doi.org/10.1016/j.jelechem.2018.05.017
doi: 10.1016/j.jelechem.2018.05.017
Tajik S, Orooji Y, Karimi F et al (2021) High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth. J Food Meas Charact 15:4617–4622. https://doi.org/10.1007/s11694-021-01027-0
doi: 10.1007/s11694-021-01027-0
Akkapinyo C, Subannajui K, Poo-Arporn Y, Poo-Arporn RP (2021) Disposable electrochemical sensor for food colorants detection by reduced graphene oxide and methionine film modified screen printed carbon electrode. Molecules 26:2312. https://doi.org/10.3390/molecules26082312
doi: 10.3390/molecules26082312
pubmed: 33923482
pmcid: 8072545
Tajik S, Beitollahi H, Jang HW, Shokouhimehr M (2020) A simple and sensitive approach for the electrochemical determination of amaranth by a Pd/GO nanomaterial-modified screen-printed electrode. RSC Adv 11:278–287. https://doi.org/10.1039/d0ra08723h
doi: 10.1039/d0ra08723h
pubmed: 35423012
pmcid: 8690309
Li L, Zheng H, Guo L et al (2019) A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink. Talanta 197:68–76. https://doi.org/10.1016/j.talanta.2019.01.009
doi: 10.1016/j.talanta.2019.01.009
pubmed: 30771990
Deepeka J, Kaur P, Kumar V et al (2023) Appraising the electrocatalytic performance of beta-cyclodextrin embellished supramolecular recognition system for pernicious food colorants. Anal Chim Acta 1240:340753. https://doi.org/10.1016/j.aca.2022.340753
doi: 10.1016/j.aca.2022.340753
pubmed: 36641148
Chen Y, Sun Y, Wang R et al (2023) One-pot synthesis of a novel conductive molecularly imprinted gel as the recognition element and signal amplifier for the selective electrochemical detection of amaranth in foods. Biosens Bioelectron 228:115185. https://doi.org/10.1016/j.bios.2023.115185
doi: 10.1016/j.bios.2023.115185
pubmed: 36878068