Electrochemical platform based on molecularly imprinted polymer with zinc oxide nanoparticles and multiwalled carbon nanotubes modified screen-printed carbon electrode for amaranth determination.

Amaranth Molecularly imprinted polymelamine Pharmaceutical samples Screen-printed carbon electrode; Differential pulse voltammetry Water samples

Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
19 May 2023
Historique:
received: 16 02 2023
accepted: 21 04 2023
medline: 19 5 2023
pubmed: 19 5 2023
entrez: 19 5 2023
Statut: epublish

Résumé

A novel electrochemical platform for amaranth determination has been developed using a rapid, easy, inexpensive, and portable molecularly imprinted polymer technique. The MIP platform was fabricated by electropolymerizing melamine as monomer in the presence of amaranth as template on the surface of ZnO-MWCNT/SPCE. Then, amaranth was completely eluted, leaving imprinted cavities in the polymeric film that could effectively recognize amaranth in solution. The electrochemical platform based on a molecularly imprinted polymelamine was analyzed by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Under optimum conditions, the developed MIP/ZnO-MWCNT/SPCE platform can be properly used for amaranth determination, with high sensitivity of 96.2 µA µM cm

Identifiants

pubmed: 37204551
doi: 10.1007/s00604-023-05811-1
pii: 10.1007/s00604-023-05811-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

229

Subventions

Organisme : Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
ID : PN-III-P4-ID-PCE-2020-0059

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Pogacean F, Rosu M-C, Coros M et al (2018) Graphene/TiO
doi: 10.1149/2.0101808jes
Mohammadzadeh JP, Aflatoonian MR, AbbasiRayeni R et al (2022) Graphite carbon nitride-modified screen-printed electrode as a highly sensitive and selective sensor for detection of amaranth. Food Chem Toxicol 163:112962. https://doi.org/10.1016/j.fct.2022.112962
doi: 10.1016/j.fct.2022.112962
Gao Y, Li H, Tong J, Wang L (2021) A new voltammetric sensor based on poly(L-cysteine)/GR composite film modified electrode for the sensitive determination of amaranth in wastewater. Environ Technol 42:2385–2390. https://doi.org/10.1080/09593330.2019.1701569
doi: 10.1080/09593330.2019.1701569 pubmed: 31823678
Beitollahi H, Garkani Nejad F, Dourandish Z, Tajik S (2022) A novel voltammetric amaranth sensor based on screen printed electrode modified with polypyrrole nanotubes. Environ Res 214:113725. https://doi.org/10.1016/j.envres.2022.113725
doi: 10.1016/j.envres.2022.113725 pubmed: 35732202
Wu Y, Li G, Tian Y et al (2021) Electropolymerization of molecularly imprinted polypyrrole film on multiwalled carbon nanotube surface for highly selective and stable determination of carcinogenic amaranth. J Electroanal Chem 895:115494. https://doi.org/10.1016/j.jelechem.2021.115494
doi: 10.1016/j.jelechem.2021.115494
Alizadeh M, Demir E, Aydogdu N et al (2022) Recent advantages in electrochemical monitoring for the analysis of amaranth and carminic acid as food color. Food Chem Toxicol 163:112929. https://doi.org/10.1016/j.fct.2022.112929
doi: 10.1016/j.fct.2022.112929 pubmed: 35307455
Tang TX, Xu XJ, Wang DM et al (2015) A rapid and green limit test method for five synthetic colorants in foods using polyamide thin-layer chromatography. Food Anal Methods 8:459–466. https://doi.org/10.1007/s12161-014-9907-6
doi: 10.1007/s12161-014-9907-6
Wu H, Guo JB, Du LM et al (2013) A rapid shaking-based ionic liquid dispersive liquid phase microextraction for the simultaneous determination of six synthetic food colourants in soft drinks, sugar- and gelatin-based confectionery by high-performance liquid chromatography. Food Chem 141:182–186. https://doi.org/10.1016/j.foodchem.2013.03.015
doi: 10.1016/j.foodchem.2013.03.015 pubmed: 23768345
Sha O, Zhu X (2015) Simultaneous ionic liquid aqueous two-phase extraction and spectrophotometric determination of amaranth and brilliant blue in food samples. J Anal Chem 70:558–565. https://doi.org/10.1134/S1061934815050123
doi: 10.1134/S1061934815050123
Martin F, Oberson JM, Meschiari M, Munari C (2016) Determination of 18 water-soluble artificial dyes by LC-MS in selected matrices. Food Chem 197:1249–1255. https://doi.org/10.1016/j.foodchem.2015.11.067
doi: 10.1016/j.foodchem.2015.11.067 pubmed: 26675864
Feng J, Li J, Huang W et al (2021) Capillary zone electrophoresis determination of five trace food additives in beverage samples using counterflow transient isotachophoresis. Food Anal Methods 14:380–388. https://doi.org/10.1007/s12161-020-01894-1
doi: 10.1007/s12161-020-01894-1
Khosrokhavar R, Motaharian A, Milani Hosseini MR, Mohammadsadegh S (2020) Screen-printed carbon electrode (SPCE) modified by molecularly imprinted polymer (MIP) nanoparticles and graphene nanosheets for determination of sertraline antidepressant drug. Microchem J 159:105348. https://doi.org/10.1016/j.microc.2020.105348
doi: 10.1016/j.microc.2020.105348
Ayankojo AG, Reut J, Ciocan V et al (2020) Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 209:120502. https://doi.org/10.1016/j.talanta.2019.120502
doi: 10.1016/j.talanta.2019.120502 pubmed: 31892030
Afzali Z, Mohadesi A, Ali Karimi M, Fathirad F (2022) A highly selective and sensitive electrochemical sensor based on graphene oxide and molecularly imprinted polymer magnetic nanocomposite for patulin determination. Microchem J 177:107215. https://doi.org/10.1016/j.microc.2022.107215
doi: 10.1016/j.microc.2022.107215
Prabhu K, Malode SJ, Shetti NP, Kulkarni RM (2022) Analysis of herbicide and its applications through a sensitive electrochemical technique based on MWCNTs/ZnO/CPE fabricated sensor. Chemosphere 287:132086. https://doi.org/10.1016/j.chemosphere.2021.132086
doi: 10.1016/j.chemosphere.2021.132086 pubmed: 34523434
Fathirad F, Afzali D, Mostafavi A et al (2013) Fabrication of a new carbon paste electrode modified with multi-walled carbon nanotube for stripping voltammetric determination of bismuth(III). Electrochim Acta 103:206–210. https://doi.org/10.1016/j.electacta.2013.03.162
doi: 10.1016/j.electacta.2013.03.162
Afzali D, Padash M, Fathirad F, Mostafavi A (2015) Determination of trace amounts of antimony(III) based on differential pulse voltammetric method with multi-walled carbon-nanotube-modified carbon paste electrode. Ionics 21:565–570. https://doi.org/10.1007/s11581-014-1200-6
doi: 10.1007/s11581-014-1200-6
Afzali D, Fathirad F, Ghaseminezhad S (2016) Determination of trace amounts of ochratoxin A in different food samples based on gold nanoparticles modified carbon paste electrode. J Food Sci Technol 53:909–914. https://doi.org/10.1007/s13197-015-2016-8
doi: 10.1007/s13197-015-2016-8 pubmed: 26788015
Afzali D, Zarei S, Fathirad F, Mostafavi A (2014) Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol. Mater Sci Eng C 43:97–101. https://doi.org/10.1016/j.msec.2014.06.035
doi: 10.1016/j.msec.2014.06.035
Shukla SK, Kushwaha CS, Singh NB (2017) Recent developments in conducting polymer based composites for sensing devices. Mater Today: Proc 5672–5681. https://doi.org/10.1016/j.matpr.2017.06.029
Naveen MH, Gurudatt NG, Shim YB (2017) Applications of conducting polymer composites to electrochemical sensors: a review. Appl Mater Today 9:419–433
doi: 10.1016/j.apmt.2017.09.001
Afzali D, Fathirad F (2016) Determination of zearalenone with a glassy carbon electrode modified with nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid. Microchim Acta 183:2633–2638. https://doi.org/10.1007/s00604-016-1907-3
doi: 10.1007/s00604-016-1907-3
Fathirad F, Mostafavi A, Afzali D (2017) Conductive polymeric ionic liquid/Fe
doi: 10.5740/jaoacint.16-0216 pubmed: 28118570
Kumar N, Goyal RN (2020) Simultaneous determination of melatonin and 5-hydroxytrptophan at the disposable poly-(melamine)/poly-(o-aminophenol) composite modified screen printed sensor. J Electroanal Chem 874:114458. https://doi.org/10.1016/j.jelechem.2020.114458
doi: 10.1016/j.jelechem.2020.114458
Mostafiz B, Bigdeli SA, Banan K et al (2021) Molecularly imprinted polymer-carbon paste electrode (MIP-CPE)-based sensors for the sensitive detection of organic and inorganic environmental pollutants: a review. Trends Environ Anal Chem 32:e00144
doi: 10.1016/j.teac.2021.e00144
Ahmad OS, Bedwell TS, Esen C et al (2019) Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol 37:294–309
doi: 10.1016/j.tibtech.2018.08.009 pubmed: 30241923
Chen L, Wang X, Lu W et al (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211
doi: 10.1039/C6CS00061D pubmed: 26936282
Wu S, Yin ZZ, Chen X et al (2020) Electropolymerized melamine for simultaneous determination of nitrite and tartrazine. Food Chem 333:127532. https://doi.org/10.1016/j.foodchem.2020.127532
doi: 10.1016/j.foodchem.2020.127532 pubmed: 32668396
Fanjul-Bolado P, Queipo P, Lamas-Ardisana PJ, Costa-García A (2007) Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Talanta 74:427–433. https://doi.org/10.1016/j.talanta.2007.07.035
doi: 10.1016/j.talanta.2007.07.035 pubmed: 18371659
Cao Q, Zhao H, Zeng L et al (2009) Electrochemical determination of melamine using oligonucleotides modified gold electrodes. Talanta 80:484–488. https://doi.org/10.1016/j.talanta.2009.07.006
doi: 10.1016/j.talanta.2009.07.006 pubmed: 19836508
Liu X, Cao L, Song W et al (2011) Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 3:2944–2952. https://doi.org/10.1021/am200737b
doi: 10.1021/am200737b pubmed: 21728327
Zanello P (2003) Inorganic electrochemistry theory, practice and application. The Royal Society of Chemistry
doi: 10.1039/9781847551146
Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical methods, Wiley 2:580–632
He Q, Liu J, Liu X et al (2018) Manganese dioxide nanorods/electrochemically reduced graphene oxide nanocomposites modified electrodes for cost-effective and ultrasensitive detection of amaranth. Colloids Surf B Biointerfaces 172:565–572. https://doi.org/10.1016/j.colsurfb.2018.09.005
doi: 10.1016/j.colsurfb.2018.09.005 pubmed: 30218982
Jing S, Zheng H, Zhao L et al (2017) Electrochemical sensor based on poly(sodium 4-styrenesulfonate) functionalized graphene and Co
doi: 10.1007/s12161-017-0889-z
Gosser DK Jr (1993) Cyclic voltammetry, simulation and analysis of reaction mechanisms. VCH Publisher, New York
Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interf Electrochem 101:19–28
doi: 10.1016/S0022-0728(79)80075-3
Akbari S (2022) A new voltammetric sensor according to graphene quantum dots/ionic liquid modified carbon paste electrode for amaranth sensitive determination. Int J Environ Anal Chem 102:789–803. https://doi.org/10.1080/03067319.2020.1726338
doi: 10.1080/03067319.2020.1726338
Nuñez-Dallos N, Macías MA, García-Beltrán O et al (2018) Voltammetric determination of amaranth and tartrazine with a new double-stranded copper(I) helicate-single-walled carbon nanotube modified screen printed electrode. J Electroanal Chem 822:95–104. https://doi.org/10.1016/j.jelechem.2018.05.017
doi: 10.1016/j.jelechem.2018.05.017
Tajik S, Orooji Y, Karimi F et al (2021) High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth. J Food Meas Charact 15:4617–4622. https://doi.org/10.1007/s11694-021-01027-0
doi: 10.1007/s11694-021-01027-0
Akkapinyo C, Subannajui K, Poo-Arporn Y, Poo-Arporn RP (2021) Disposable electrochemical sensor for food colorants detection by reduced graphene oxide and methionine film modified screen printed carbon electrode. Molecules 26:2312. https://doi.org/10.3390/molecules26082312
doi: 10.3390/molecules26082312 pubmed: 33923482 pmcid: 8072545
Tajik S, Beitollahi H, Jang HW, Shokouhimehr M (2020) A simple and sensitive approach for the electrochemical determination of amaranth by a Pd/GO nanomaterial-modified screen-printed electrode. RSC Adv 11:278–287. https://doi.org/10.1039/d0ra08723h
doi: 10.1039/d0ra08723h pubmed: 35423012 pmcid: 8690309
Li L, Zheng H, Guo L et al (2019) A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink. Talanta 197:68–76. https://doi.org/10.1016/j.talanta.2019.01.009
doi: 10.1016/j.talanta.2019.01.009 pubmed: 30771990
Deepeka J, Kaur P, Kumar V et al (2023) Appraising the electrocatalytic performance of beta-cyclodextrin embellished supramolecular recognition system for pernicious food colorants. Anal Chim Acta 1240:340753. https://doi.org/10.1016/j.aca.2022.340753
doi: 10.1016/j.aca.2022.340753 pubmed: 36641148
Chen Y, Sun Y, Wang R et al (2023) One-pot synthesis of a novel conductive molecularly imprinted gel as the recognition element and signal amplifier for the selective electrochemical detection of amaranth in foods. Biosens Bioelectron 228:115185. https://doi.org/10.1016/j.bios.2023.115185
doi: 10.1016/j.bios.2023.115185 pubmed: 36878068

Auteurs

Ramona Georgescu-State (R)

Laboratory of Electrochemistry and PATLAB, National Institute of Research and Development for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Street, 060021, Bucharest, Romania. state_ramona@yahoo.ro.

Jacobus Koos Frederick van Staden (JKF)

Laboratory of Electrochemistry and PATLAB, National Institute of Research and Development for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.

Raluca-Ioana Stefan-van Staden (RS)

Laboratory of Electrochemistry and PATLAB, National Institute of Research and Development for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.

Razvan Nicolae State (RN)

"Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.

Classifications MeSH