Fetal liver development and implications for liver disease pathogenesis.
Journal
Nature reviews. Gastroenterology & hepatology
ISSN: 1759-5053
Titre abrégé: Nat Rev Gastroenterol Hepatol
Pays: England
ID NLM: 101500079
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
accepted:
30
03
2023
medline:
28
8
2023
pubmed:
20
5
2023
entrez:
19
5
2023
Statut:
ppublish
Résumé
The metabolic, digestive and homeostatic roles of the liver are dependent on proper crosstalk and organization of hepatic cell lineages. These hepatic cell lineages are derived from their respective progenitors early in organogenesis in a spatiotemporally controlled manner, contributing to the liver's specialized and diverse microarchitecture. Advances in genomics, lineage tracing and microscopy have led to seminal discoveries in the past decade that have elucidated liver cell lineage hierarchies. In particular, single-cell genomics has enabled researchers to explore diversity within the liver, especially early in development when the application of bulk genomics was previously constrained due to the organ's small scale, resulting in low cell numbers. These discoveries have substantially advanced our understanding of cell differentiation trajectories, cell fate decisions, cell lineage plasticity and the signalling microenvironment underlying the formation of the liver. In addition, they have provided insights into the pathogenesis of liver disease and cancer, in which developmental processes participate in disease emergence and regeneration. Future work will focus on the translation of this knowledge to optimize in vitro models of liver development and fine-tune regenerative medicine strategies to treat liver disease. In this Review, we discuss the emergence of hepatic parenchymal and non-parenchymal cells, advances that have been made in in vitro modelling of liver development and draw parallels between developmental and pathological processes.
Identifiants
pubmed: 37208503
doi: 10.1038/s41575-023-00775-2
pii: 10.1038/s41575-023-00775-2
doi:
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
561-581Informations de copyright
© 2023. Springer Nature Limited.
Références
Ben-Moshe, S. et al. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 29, 973–989.e10 (2022). This article describes the use of spatially resolved single-cell RNA-seq to profile regeneration following drug-induced acute pericentral damage, and shows a transient upregulation of oncofetal genes while hepatocytes proliferate and are zonally reprogrammed to replace necrotic pericentral hepatocytes.
pubmed: 35659879
doi: 10.1016/j.stem.2022.04.008
Font-Burgada, J. et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162, 766–779 (2015).
pubmed: 26276631
pmcid: 4545590
doi: 10.1016/j.cell.2015.07.026
Tarlow, B. D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618 (2014).
pubmed: 25312494
pmcid: 4254170
doi: 10.1016/j.stem.2014.09.008
Deng, X. et al. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23, 114–122.e3 (2018).
pubmed: 29937200
doi: 10.1016/j.stem.2018.05.022
Cheemerla, S. & Balakrishnan, M. Global epidemiology of chronic liver disease. Clin. Liver Dis. 17, 365–370 (2021).
doi: 10.1002/cld.1061
Tremblay, K. D. & Zaret, K. S. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev. Biol. 280, 87–99 (2005).
pubmed: 15766750
doi: 10.1016/j.ydbio.2005.01.003
Wang, J., Rhee, S., Palaria, A. & Tremblay, K. D. FGF signaling is required for anterior but not posterior specification of the murine liver bud. Dev. Dyn. 244, 431–443 (2015).
pubmed: 25302779
doi: 10.1002/dvdy.24215
Palaria, A., Angelo, J. R., Guertin, T. M., Mager, J. & Tremblay, K. D. Patterning of the hepato‐pancreatobiliary boundary by BMP reveals heterogeneity within the murine liver bud. Hepatology 68, 274–288 (2018).
pubmed: 29315687
doi: 10.1002/hep.29769
Houssaint, E. Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ. 9, 269–279 (1980).
pubmed: 7438211
doi: 10.1016/0045-6039(80)90026-3
Gualdi, R. et al. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 10, 1670–1682 (1996).
pubmed: 8682297
doi: 10.1101/gad.10.13.1670
Jung, J., Zheng, M., Goldfarb, M. & Zaret, K. S. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998–2003 (1999).
pubmed: 10373120
doi: 10.1126/science.284.5422.1998
Bort, R., Signore, M., Tremblay, K., Barbera, J. P. M. & Zaret, K. S. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44–56 (2006).
pubmed: 16364283
doi: 10.1016/j.ydbio.2005.11.006
Margagliotti, S. et al. Role of metalloproteinases at the onset of liver development. Dev. Growth Differ. 50, 331–338 (2008).
pubmed: 18445063
doi: 10.1111/j.1440-169X.2008.01031.x
Alder, O. et al. Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. Cell Rep. 9, 261–271 (2014).
pubmed: 25263553
pmcid: 4612615
doi: 10.1016/j.celrep.2014.08.046
Iwafuchi-Doi, M. et al. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol. Cell 62, 79–91 (2016).
pubmed: 27058788
pmcid: 4826471
doi: 10.1016/j.molcel.2016.03.001
Gordillo, M., Evans, T. & Gouon-Evans, V. Orchestrating liver development. Development 142, 2094–2108 (2015).
pubmed: 26081571
pmcid: 4483763
doi: 10.1242/dev.114215
Hikspoors, J. P. J. M. et al. The fate of the vitelline and umbilical veins during the development of the human liver. J. Anat. 231, 718–735 (2017). This article describes a comprehensive examination of the fate of mouse, pig and human vitelline and umbilical vein during hepatogenesis.
pubmed: 28786203
pmcid: 5643923
doi: 10.1111/joa.12671
Lotto, J. et al. Single-cell transcriptomics reveals early emergence of liver parenchymal and non-parenchymal cell lineages. Cell 183, 702–716.e14 (2020). This article describes a comprehensive single-cell atlas of hepatic cell development, detailing diversity and differentiation of parenchymal and non-parenchymal cell types, including a distinct hepatic cell type displaying a hybrid hepatic–mesenchymal phenotype.
pubmed: 33125890
pmcid: 7643810
doi: 10.1016/j.cell.2020.09.012
Zhang, H. et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat. Genet. 48, 537–543 (2016). Using intersectional genetics and lineage tracing, this article shows that a considerable number of liver endothelial cells originate from the dorsal aspect of the endocardium in mice.
pubmed: 27019112
doi: 10.1038/ng.3536
Lee, L. K. et al. LYVE1 marks the divergence of yolk sac definitive hemogenic endothelium from the primitive erythroid lineage. Cell Rep. 17, 2286–2298 (2016).
pubmed: 27880904
pmcid: 6940422
doi: 10.1016/j.celrep.2016.10.080
Swartley, O. M., Foley, J. F., Livingston, D. P., Cullen, J. M. & Elmore, S. A. Histology atlas of the developing mouse hepatobiliary hemolymphatic vascular system with emphasis on embryonic days 11.5–18.5 and early postnatal development. Toxicol. Pathol. 44, 705–725 (2016).
pubmed: 26961180
pmcid: 4912388
doi: 10.1177/0192623316630836
Sugiyama, Y. et al. Sinusoid development and morphogenesis may be stimulated by VEGF‐Flk‐1 signaling during fetal mouse liver development. Dev. Dyn. 239, 386–397 (2010).
pubmed: 19918884
doi: 10.1002/dvdy.22162
DeSesso, J. M. Vascular ontogeny within selected thoracoabdominal organs and the limbs. Reprod. Toxicol. 70, 3–20 (2017).
pubmed: 27810254
doi: 10.1016/j.reprotox.2016.10.007
Lassau, J. P. & Bastian, D. Organogenesis of the venous structures of the human liver: a hemodynamic theory. Anat. Clin. 5, 97–102 (1983).
doi: 10.1007/BF01798980
Ema, H. & Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284–2288 (2000).
pubmed: 10733497
doi: 10.1182/blood.V95.7.2284
Johnson, G. R. & Moore, M. A. S. Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature 258, 726–728 (1975).
pubmed: 1207754
doi: 10.1038/258726a0
Zovein, A. C. et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636 (2008).
pubmed: 19041779
pmcid: 2631552
doi: 10.1016/j.stem.2008.09.018
Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).
pubmed: 8808625
doi: 10.1016/S0092-8674(00)80165-8
Hirsch, E., Iglesias, A., Potocnik, A. J., Hartmann, U. & Fässler, R. Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins. Nature 380, 171–175 (1996).
pubmed: 8600394
doi: 10.1038/380171a0
Emambokus, N. R. & Frampton, J. The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. Immunity 19, 33–45 (2003).
pubmed: 12871637
doi: 10.1016/S1074-7613(03)00173-0
Ara, T. et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19, 257–267 (2003).
pubmed: 12932359
doi: 10.1016/S1074-7613(03)00201-2
Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).
pubmed: 22281595
pmcid: 3270376
doi: 10.1038/nature10783
Khan, J. A. et al. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351, 176–180 (2016).
pubmed: 26634440
doi: 10.1126/science.aad0084
Ceredig, R., Rolink, A. G. & Brown, G. Models of haematopoiesis: seeing the wood for the trees. Nat. Rev. Immunol. 9, 293–300 (2009).
pubmed: 19282853
doi: 10.1038/nri2525
Lorenz, L. et al. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 562, 128–132 (2018).
pubmed: 30258227
doi: 10.1038/s41586-018-0522-3
Antoniou, A. et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 136, 2325–2333 (2009).
pubmed: 19403103
doi: 10.1053/j.gastro.2009.02.051
Zong, Y. et al. Notch signaling controls liver development by regulating biliary differentiation. Development 136, 1727–1739 (2009).
pubmed: 19369401
pmcid: 2673761
doi: 10.1242/dev.029140
Clotman, F. et al. Control of liver cell fate decision by a gradient of TGFβ signaling modulated by Onecut transcription factors. Genes Dev. 19, 1849–1854 (2005).
pubmed: 16103213
pmcid: 1186184
doi: 10.1101/gad.340305
Kodama, Y., Hijikata, M., Kageyama, R., Shimotohno, K. & Chiba, T. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127, 1775–1786 (2004).
pubmed: 15578515
doi: 10.1053/j.gastro.2004.09.004
Gouysse, G. et al. Relationship between vascular development and vascular differentiation during liver organogenesis in humans. J. Hepatol. 37, 730–740 (2002).
pubmed: 12445412
doi: 10.1016/S0168-8278(02)00282-9
Liedekerke, P. V. et al. Quantitative modeling identifies critical cell mechanics driving bile duct lumen formation. PLoS Comput. Biol. 18, e1009653 (2022).
pubmed: 35180209
pmcid: 8856558
doi: 10.1371/journal.pcbi.1009653
Carpentier, R. et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141, 1432–1438.e4 (2011).
pubmed: 21708104
doi: 10.1053/j.gastro.2011.06.049
Shiojiri, N. & Katayama, H. Secondary joining of the bile ducts during the hepatogenesis of the mouse embryo. Anat. Embryol. 177, 153–163 (1987).
doi: 10.1007/BF00572540
Tan, C. E. L. & Moscoso, G. J. The developing human biliary system at the porta hepatis level between 11 and 25 weeks of gestation: a way to understanding biliary atresia. Part 2. Pathol. Int. 44, 600–610 (1994).
pubmed: 7524952
doi: 10.1111/j.1440-1827.1994.tb01720.x
Tan, C. E. L. & Moscoso, G. J. The developing human biliary system at the porta hepatis level between 29 days and 8 weeks of gestation: a way to understanding biliary atresia. Part 1. Pathol. Int. 44, 587–599 (1994).
pubmed: 7524951
doi: 10.1111/j.1440-1827.1994.tb01719.x
Fabris, L. et al. Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development. Hepatology 47, 719–728 (2008).
pubmed: 18157837
doi: 10.1002/hep.22015
Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019).
pubmed: 30936469
doi: 10.1038/s41575-019-0134-x
Vidal-Vanaclocha, F. & Barberá-Guillem, E. Fenestration patterns in endothelial cells of rat liver sinusoids. J. Ultrastruct. Res. 90, 115–123 (1985).
pubmed: 4068137
doi: 10.1016/0889-1605(85)90102-8
Wisse, E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J. Ultrastruct. Res. 31, 125–150 (1970).
pubmed: 5442603
doi: 10.1016/S0022-5320(70)90150-4
Wisse, E. An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J. Ultrastruct. Res. 38, 528–562 (1972).
pubmed: 4335119
doi: 10.1016/0022-5320(72)90089-5
Wisse, E., Zanger, R. B., de, Charels, K., van der Smissen, P. & McCuskey, R. S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5, 683–692 (1985).
pubmed: 3926620
doi: 10.1002/hep.1840050427
Shetty, S. et al. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J. Immunol. 186, 4147–4155 (2011).
pubmed: 21368224
doi: 10.4049/jimmunol.1002961
John, B. & Crispe, I. N. Passive and active mechanisms trap activated CD8
pubmed: 15100260
doi: 10.4049/jimmunol.172.9.5222
Cain, J. C. & Grindlay, J. H. Lymph from liver and thoracic duct; an experimental study. Surg. Gynecol. Obstet. 85, 558–562 (1947).
pubmed: 20266768
Amersfoort, J., Eelen, G. & Carmeliet, P. Immunomodulation by endothelial cells – partnering up with the immune system? Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00694-4 (2022).
doi: 10.1038/s41577-022-00694-4
pubmed: 35288707
pmcid: 8920067
Wu, J. et al. Toll‐like receptor‐induced innate immune responses in non‐parenchymal liver cells are cell type‐specific. Immunology 129, 363–374 (2010).
pubmed: 19922426
pmcid: 2826681
doi: 10.1111/j.1365-2567.2009.03179.x
Ohtani, O. & Ohtani, Y. Lymph circulation in the liver. Anat. Rec. 291, 643–652 (2008).
doi: 10.1002/ar.20681
Frenkel, N. C. et al. Liver lymphatic drainage patterns follow segmental anatomy in a murine model. Sci. Rep. 10, 21808 (2020).
pubmed: 33311587
pmcid: 7732834
doi: 10.1038/s41598-020-78727-y
Wareing, S., Eliades, A., Lacaud, G. & Kouskoff, V. ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development. Dev. Dyn. 241, 1454–1464 (2012).
pubmed: 22733530
doi: 10.1002/dvdy.23825
Kisanuki, Y. Y. et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230–242 (2001).
pubmed: 11161575
doi: 10.1006/dbio.2000.0106
Rasmussen, T. L. et al. ER71 directs mesodermal fate decisions during embryogenesis. Development 138, 4801–4812 (2011).
pubmed: 21989919
pmcid: 3190388
doi: 10.1242/dev.070912
Misfeldt, A. M. et al. Endocardial cells are a distinct endothelial lineage derived from Flk1
pubmed: 19576203
doi: 10.1016/j.ydbio.2009.06.033
Kattman, S. J., Huber, T. L. & Keller, G. M. Multipotent Flk-1
pubmed: 17084363
doi: 10.1016/j.devcel.2006.10.002
Pardanaud, L. et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122, 1363–1371 (1996).
pubmed: 8625825
doi: 10.1242/dev.122.5.1363
Stone, O. A. & Stainier, D. Y. R. Paraxial mesoderm is the major source of lymphatic endothelium. Dev. Cell 50, 247–255.e3 (2019).
pubmed: 31130354
pmcid: 6658618
doi: 10.1016/j.devcel.2019.04.034
Goldman, O. et al. Endoderm generates endothelial cells during liver development. Stem Cell Rep. 3, 556–565 (2014).
doi: 10.1016/j.stemcr.2014.08.009
Srinivasan, R. S. et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 21, 2422–2432 (2007).
pubmed: 17908929
pmcid: 1993873
doi: 10.1101/gad.1588407
Asahina, K., Zhou, B., Pu, W. T. & Tsukamoto, H. Septum transversum‐derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53, 983–995 (2011).
pubmed: 21294146
doi: 10.1002/hep.24119
Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008).
pubmed: 18568026
pmcid: 2574791
doi: 10.1038/nature07060
Gómez-Salinero, J. M. et al. Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 29, 593–609.e7 (2022). This article describes a single-cell transcriptomic analysis of liver endothelial cell development in mice that identifies Maf as a key regulator of LSEC identity, which when overexpressed in generic human endothelial cells induces their transdifferentiation to LSEC-like cells.
pubmed: 35364013
pmcid: 9290393
doi: 10.1016/j.stem.2022.03.002
Winkler, M. et al. Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J. Hepatol. 74, 380–393 (2021).
pubmed: 32916216
doi: 10.1016/j.jhep.2020.08.033
Théret, N., Lehti, K., Musso, O. & Clément, B. MMP2 activation by collagen I and concanavalin A in cultured human hepatic stellate cells. Hepatology 30, 462–468 (1999).
pubmed: 10421655
doi: 10.1002/hep.510300236
Hellerbrand, C., Stefanovic, B., Giordano, F., Burchardt, E. R. & Brenner, D. A. The role of TGFβ1 in initiating hepatic stellate cell activation in vivo. J. Hepatol. 30, 77–87 (1999).
pubmed: 9927153
doi: 10.1016/S0168-8278(99)80010-5
Ratziu, V. et al. Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc. Natl Acad. Sci. USA 95, 9500–9505 (1998).
pubmed: 9689109
pmcid: 21367
doi: 10.1073/pnas.95.16.9500
Asahina, K. et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 49, 998–1011 (2009).
pubmed: 19085956
doi: 10.1002/hep.22721
Schulte, I., Schlueter, J., Abu‐Issa, R., Brand, T. & Männer, J. Morphological and molecular left–right asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Dev. Dyn. 236, 684–695 (2007).
pubmed: 17238175
doi: 10.1002/dvdy.21065
Komiyama, M., Ito, K. & Shimada, Y. Origin and development of the epicardium in the mouse embryo. Anat. Embryol. 176, 183–189 (1987).
doi: 10.1007/BF00310051
Nitou, M., Ishikawa, K. & Shiojiri, N. Immunohistochemical analysis of development of desmin‐positive hepatic stellate cells in mouse liver. J. Anat. 197, 635–646 (2000).
pubmed: 11197537
pmcid: 1468179
doi: 10.1046/j.1469-7580.2000.19740635.x
Delgado, I. et al. GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology 59, 2358–2370 (2014).
pubmed: 24415412
doi: 10.1002/hep.27005
Steiniger, B., Klempnauer, J. & Wonigeit, K. Phenotype and histological distribution of interstitial dendritic cells in the rat pancreas, liver, heart, and kidney. Transplantation 38, 169–174 (1984).
pubmed: 6380042
doi: 10.1097/00007890-198408000-00016
Naito, M., Hasegawa, G. & Takahashi, K. Development, differentiation, and maturation of Kupffer cells. Microsc. Res. Tech. 39, 350–364 (1997).
pubmed: 9407545
doi: 10.1002/(SICI)1097-0029(19971115)39:4<350::AID-JEMT5>3.0.CO;2-L
Doherty, D. G. et al. The human liver contains multiple populations of NK cells, T cells, and CD3
doi: 10.4049/jimmunol.163.4.2314
Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161
pubmed: 21084709
doi: 10.1182/blood-2010-08-303339
Forkel, M. et al. Composition and functionality of the intrahepatic innate lymphoid cell‐compartment in human nonfibrotic and fibrotic livers. Eur. J. Immunol. 47, 1280–1294 (2017).
pubmed: 28613415
doi: 10.1002/eji.201646890
Prickett, T. C. R., Mckenzie, J. L. & Hart, D. N. J. Characterization of interstitial dendritic cells in human liver. Transplantation 46, 754–761 (1988).
pubmed: 3057697
doi: 10.1097/00007890-198811000-00024
Bilzer, M., Roggel, F. & Gerbes, A. L. Role of Kupffer cells in host defense and liver disease. Liver Int. 26, 1175–1186 (2006).
pubmed: 17105582
doi: 10.1111/j.1478-3231.2006.01342.x
Perdiguero, E. G. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015). This article describes the use of lineage tracing to identify a distinct population of yolk sac-derived progenitors that give rise to fetal haematopoietic cells and adult tissue-resident macrophages, including Kupffer cells.
doi: 10.1038/nature13989
Scott, C. L. et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun. 7, 10321 (2016).
pubmed: 26813785
pmcid: 4737801
doi: 10.1038/ncomms10321
Delalande, J., Milla, P. J. & Burns, A. J. Hepatic nervous system development. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 280, 848–853 (2004).
pubmed: 15382016
doi: 10.1002/ar.a.20090
Lin, Y., Nosaka, S., Amakata, Y. & Maeda, T. Comparative study of the mammalian liver innervation: an immunohistochemical study of protein gene product 9.5, dopamine β-hydroxylase and tyrosine hydroxylase. Comp. Biochem. Physiol. A Physiol. 110, 289–298 (1995).
pubmed: 7735898
doi: 10.1016/0300-9629(94)00189-Z
Shimazu, T. & Fukuda, A. Increased activities of glycogenolytic enzymes in liver after splanchnic-nerve stimulation. Science 150, 1607–1608 (1965).
pubmed: 4286322
doi: 10.1126/science.150.3703.1607
Ueno, T., Bioulac‐Sage, P., Balabaud, C. & Rosenbaum, J. Innervation of the sinusoidal wall: regulation of the sinusoidal diameter. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 280, 868–873 (2004).
pubmed: 15382014
doi: 10.1002/ar.a.20092
Alvaro, D. et al. Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. J. Clin. Invest. 100, 1349–1362 (1997).
pubmed: 9294100
pmcid: 508313
doi: 10.1172/JCI119655
Izumi, T. et al. Vagus-macrophage-hepatocyte link promotes post-injury liver regeneration and whole-body survival through hepatic FoxM1 activation. Nat. Commun. 9, 5300 (2018).
pubmed: 30546054
pmcid: 6294142
doi: 10.1038/s41467-018-07747-0
Cassiman, D., Barlow, A., Borght, S. V., Libbrecht, L. & Pachnis, V. Hepatic stellate cells do not derive from the neural crest. J. Hepatol. 44, 1098–1104 (2006).
pubmed: 16458991
doi: 10.1016/j.jhep.2005.09.023
Koike, N. et al. Development of the nervous system in mouse liver. World J. Hepatol. 14, 386–399 (2022).
pubmed: 35317173
pmcid: 8891673
doi: 10.4254/wjh.v14.i2.386
Tanimizu, N., Ichinohe, N. & Mitaka, T. Intrahepatic bile ducts guide establishment of the intrahepatic nerve network in developing and regenerating mouse liver. Development 145, dev159095 (2018). This article shows that nerve fibres gradually extend along periportal tissue from E17.5 until postnatal stages, with nerve growth factor production in cholangiocytes stimulating nerve fibre extension during development and regeneration after injury.
pubmed: 29615468
doi: 10.1242/dev.159095
Tiniakos, D. G., Lee, J. A. & Burt, A. D. Innervation of the liver: morphology and function. Liver 16, 151–160 (1996).
pubmed: 8873001
doi: 10.1111/j.1600-0676.1996.tb00721.x
MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).
pubmed: 30348985
pmcid: 6197289
doi: 10.1038/s41467-018-06318-7
Payen, V. L. et al. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Rep. 3, 100278 (2021).
pubmed: 34027339
pmcid: 8121977
doi: 10.1016/j.jhepr.2021.100278
Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).
pubmed: 31292543
pmcid: 6687507
doi: 10.1038/s41586-019-1373-2
Andrews, T. S. et al. Single‐cell, single‐nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol. Commun. 6, 821–840 (2022).
pubmed: 34792289
doi: 10.1002/hep4.1854
Zhao, J. et al. Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human. Cell Discov. 6, 22 (2020).
pubmed: 32351704
pmcid: 7186229
doi: 10.1038/s41421-020-0157-z
Lei, L. et al. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 76, 1360–1375 (2022).
pubmed: 35278227
doi: 10.1002/hep.32456
Wang, Z.-Y. et al. Single-cell and bulk transcriptomics of the liver reveals potential targets of NASH with fibrosis. Sci. Rep. 11, 19396 (2021).
pubmed: 34588551
pmcid: 8481490
doi: 10.1038/s41598-021-98806-y
Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019).
pubmed: 31722201
pmcid: 6856722
doi: 10.1016/j.celrep.2019.10.024
Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019). This article identifies non-parenchymal cell subtypes specific to the fibrotic niche, as well as several pro-fibrogenic ligand-receptor interactions, using single-cell RNA-seq comparing healthy and cirrhotic human livers.
pubmed: 31597160
pmcid: 6876711
doi: 10.1038/s41586-019-1631-3
Alvarez, M. et al. Human liver single nucleus and single cell RNA sequencing identify a hepatocellular carcinoma-associated cell-type affecting survival. Genome Med. 14, 50 (2022).
pubmed: 35581624
pmcid: 9115949
doi: 10.1186/s13073-022-01055-5
Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).
pubmed: 28622514
doi: 10.1016/j.cell.2017.05.035
Meng, Y. et al. Single cell transcriptional diversity and intercellular crosstalk of human liver cancer. Cell Death Dis. 13, 261 (2022).
pubmed: 35322024
pmcid: 8943132
doi: 10.1038/s41419-022-04689-w
Pepe-Mooney, B. J. et al. Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration. Cell Stem Cell 25, 23–38.e8 (2019). This article demonstrates transcriptional heterogeneity within healthy adult biliary epithelium instead of a clearly defined progenitor-like cell state and identify YAP as an important driver of this heterogeneity as well as during hepatocyte regeneration.
pubmed: 31080134
pmcid: 6814390
doi: 10.1016/j.stem.2019.04.004
Halpern, K. B. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962–970 (2018).
pubmed: 30222169
pmcid: 6546596
doi: 10.1038/nbt.4231
Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).
pubmed: 28166538
pmcid: 5321580
doi: 10.1038/nature21065
Hildebrandt, F. et al. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat. Commun. 12, 7046 (2021).
pubmed: 34857782
pmcid: 8640072
doi: 10.1038/s41467-021-27354-w
Nowotschin, S. et al. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569, 361–367 (2019).
pubmed: 30959515
pmcid: 6724221
doi: 10.1038/s41586-019-1127-1
Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).
pubmed: 30787436
pmcid: 6522369
doi: 10.1038/s41586-019-0933-9
Kwon, G. S., Viotti, M. & Hadjantonakis, A.-K. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev. Cell 15, 509–520 (2008).
pubmed: 18854136
pmcid: 2677989
doi: 10.1016/j.devcel.2008.07.017
Han, L. et al. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat. Commun. 11, 4158 (2020).
pubmed: 32855417
pmcid: 7453027
doi: 10.1038/s41467-020-17968-x
Willnow, D. et al. Quantitative lineage analysis identifies a hepato-pancreato-biliary progenitor niche. Nature 597, 87–91 (2021). This article shows plasticity between hepatopancreatobiliary cell fates, identifying a multipotent progenitor population that is sustained past organ anlage formation in a specialized niche.
pubmed: 34433966
doi: 10.1038/s41586-021-03844-1
Mu, T. et al. Embryonic liver developmental trajectory revealed by single-cell RNA sequencing in the Foxa2eGFP mouse. Commun. Biol. 3, 642 (2020).
pubmed: 33144666
pmcid: 7642341
doi: 10.1038/s42003-020-01364-8
Su, X. et al. Single-cell RNA-seq analysis reveals dynamic trajectories during mouse liver development. BMC Genomics 18, 946 (2017).
pubmed: 29202695
pmcid: 5715535
doi: 10.1186/s12864-017-4342-x
Yang, L. et al. A single‐cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology 66, 1387–1401 (2017).
pubmed: 28681484
doi: 10.1002/hep.29353
Prior, N. et al. Lgr5
pubmed: 31142540
pmcid: 6602348
doi: 10.1242/dev.174557
Wang, X. et al. Comparative analysis of cell lineage differentiation during hepatogenesis in humans and mice at the single-cell transcriptome level. Cell Res. 30, 1109–1126 (2020). This article compares single-cell transcriptomic data from mouse and human livers during development, showing general conservation of cell differentiation programmes, including the development of a unique population of ID3
pubmed: 32690901
pmcid: 7784864
doi: 10.1038/s41422-020-0378-6
Segal, J. M. et al. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat. Commun. 10, 3350 (2019). This article identifies a hepatobiliary hybrid progenitor in human fetal liver, residing in the ductal plate.
pubmed: 31350390
pmcid: 6659636
doi: 10.1038/s41467-019-11266-x
Liang, Y. et al. Temporal analyses of postnatal liver development and maturation by single-cell transcriptomics. Dev. Cell 57, 398–414.e5 (2022). This article catalogues parenchymal and non-parenchymal hepatic cells from neonatal to adult mouse livers, enabling insights into the zonation of the liver.
pubmed: 35134346
pmcid: 8842999
doi: 10.1016/j.devcel.2022.01.004
Wesley, B. T. et al. Single-cell atlas of human liver development reveals pathways directing hepatic cell fates. Nat. Cell Biol. https://doi.org/10.1038/s41556-022-00989-7 (2022). This article describes the use of single-cell genomics data from developing human fetal livers to generate a bipotential hepatoblast organoid model and test candidate factors to improve the functionality of HLCs generated from human PSCs.
doi: 10.1038/s41556-022-00989-7
pubmed: 36109670
Dong, J. et al. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. Genome Biol. 19, 31 (2018).
pubmed: 29540203
pmcid: 5853091
doi: 10.1186/s13059-018-1416-2
Cordero-Espinoza, L. et al. Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation. Cell Stem Cell 28, 1907–1921.e8 (2021).
pubmed: 34343491
pmcid: 8577825
doi: 10.1016/j.stem.2021.07.002
Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).
pubmed: 31597962
pmcid: 6861135
doi: 10.1038/s41586-019-1652-y
Vanuytsel, K. et al. Multi-modal profiling of human fetal liver hematopoietic stem cells reveals the molecular signature of engraftment. Nat. Commun. 13, 1103 (2022).
pubmed: 35232959
pmcid: 8888592
doi: 10.1038/s41467-022-28616-x
Bian, Z. et al. Deciphering human macrophage development at single-cell resolution. Nature 582, 571–576 (2020).
pubmed: 32499656
doi: 10.1038/s41586-020-2316-7
Gao, S. et al. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res. 32, 38–53 (2022).
pubmed: 34341490
doi: 10.1038/s41422-021-00540-7
Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).
pubmed: 33367645
pmcid: 7763177
doi: 10.1093/gigascience/giaa151
Rossi, J. M., Dunn, N. R., Hogan, B. L. & Zaret, K. S. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 15, 1998–2009 (2001).
pubmed: 11485993
pmcid: 312750
doi: 10.1101/gad.904601
Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).
pubmed: 11577199
doi: 10.1126/science.1063889
Aguilera-Castrejon, A. et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 593, 119–124 (2021). This article describes the development of a protocol to culture mouse E5.5 embryos up to hindlimb formation stage (E11 equivalent) ex vivo, showing accurate recapitulation of in vivo development using single-cell RNA-seq, histology and morphology.
pubmed: 33731940
doi: 10.1038/s41586-021-03416-3
Wadman, M. Medical research: cell division. Nature 498, 422–426 (2013).
pubmed: 23803825
doi: 10.1038/498422a
Wadman, M. The truth about fetal tissue research. Nature 528, 178–181 (2015).
pubmed: 26659164
doi: 10.1038/528178a
Lovell-Badge, R. et al. ISSCR guidelines for stem cell research and clinical translation: the 2021 update. Stem Cell Rep. 16, 1398–1408 (2021).
doi: 10.1016/j.stemcr.2021.05.012
Rabesandratana, T. E.U. Commission rejects plea to block stem cell research funding. SCIENCEINSIDER https://www.science.org/content/article/eu-commission-rejects-plea-block-stem-cell-research-funding (2014).
Ishii, T. & Eto, K. Fetal stem cell transplantation: past, present, and future. World J. Stem Cell 6, 404 (2014).
doi: 10.4252/wjsc.v6.i4.404
Ang, L. T. et al. A roadmap for human liver differentiation from pluripotent stem cells. Cell Rep. 22, 2190–2205 (2018). This article describes an in vitro protocol to efficiently derive HLCs from pluripotent stem cells by including dynamic signals driving hepatic fate and blocking alternate fates.
pubmed: 29466743
pmcid: 5854481
doi: 10.1016/j.celrep.2018.01.087
Tayeb, K. S. et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51, 297–305 (2010).
doi: 10.1002/hep.23354
Loh, K. M. et al. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell 14, 237–252 (2014).
pubmed: 24412311
pmcid: 4045507
doi: 10.1016/j.stem.2013.12.007
Takebe, T. et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 21, 2661–2670 (2017).
pubmed: 29212014
doi: 10.1016/j.celrep.2017.11.005
Zhao, D. et al. Promotion of the efficient metabolic maturation of human pluripotent stem cell-derived hepatocytes by correcting specification defects. Cell Res. 23, 157–161 (2013).
pubmed: 23070301
doi: 10.1038/cr.2012.144
Wang, A. et al. Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates. Cell Stem Cell 16, 386–399 (2015).
pubmed: 25842977
pmcid: 4478079
doi: 10.1016/j.stem.2015.02.013
Siller, R., Greenhough, S., Naumovska, E. & Sullivan, G. J. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Rep. 4, 939–952 (2015).
doi: 10.1016/j.stemcr.2015.04.001
Gage, B. K. et al. Generation of functional liver sinusoidal endothelial cells from human pluripotent stem-cell-derived venous angioblasts. Cell Stem Cell 27, 254–269.e9 (2020).
pubmed: 32640183
doi: 10.1016/j.stem.2020.06.007
Marsee, A. et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28, 816–832 (2021).
pubmed: 33961769
doi: 10.1016/j.stem.2021.04.005
Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606.e19 (2018). This article shows successful growth of human and mouse hepatic cells as 3D organoids, enabling long-term culture while maintaining functional resemblance to in vivo hepatocytes.
pubmed: 30500538
doi: 10.1016/j.cell.2018.11.013
Hendriks, D. et al. Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver. Nat. Protoc. 16, 182–217 (2021).
pubmed: 33247284
doi: 10.1038/s41596-020-00411-2
Ramli, M. N. B. et al. Human pluripotent stem cell-derived organoids as models of liver disease. Gastroenterology 159, 1471–1486.e12 (2020).
pubmed: 32553762
doi: 10.1053/j.gastro.2020.06.010
Guan, Y. et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight 2, e94954 (2017).
pubmed: 28878125
pmcid: 5621886
doi: 10.1172/jci.insight.94954
Artegiani, B. et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat. Cell Biol. 22, 321–331 (2020).
pubmed: 32123335
doi: 10.1038/s41556-020-0472-5
Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).
pubmed: 23823721
doi: 10.1038/nature12271
Raggi, C. et al. Leveraging interacting signaling pathways to robustly improve the quality and yield of human pluripotent stem cell-derived hepatoblasts and hepatocytes. Stem Cell Rep. 17, 584–598 (2022).
doi: 10.1016/j.stemcr.2022.01.003
Takeishi, K. et al. Assembly and function of a bioengineered human liver for transplantation generated solely from induced pluripotent stem cells. Cell Rep. 31, 107711 (2020).
pubmed: 32492423
pmcid: 7734598
doi: 10.1016/j.celrep.2020.107711
Koike, H. et al. Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells. Nat. Protoc. 16, 919–936 (2021).
pubmed: 33432231
pmcid: 8212777
doi: 10.1038/s41596-020-00441-w
Koike, H. et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature 574, 112–116 (2019). This article describes the combination of anterior and posterior foregut spheroids into a multi-organ 3D culture resulting in hepatic, biliary and pancreatic structures invaginating from the foregut–midgut boundary, enabling the study of early organ morphogenesis.
pubmed: 31554966
pmcid: 7643931
doi: 10.1038/s41586-019-1598-0
Ouchi, R. et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30, 374–384.e6 (2019).
pubmed: 31155493
pmcid: 6687537
doi: 10.1016/j.cmet.2019.05.007
Tarlow, B. D., Finegold, M. J. & Grompe, M. Clonal tracing of Sox9
pubmed: 24700457
doi: 10.1002/hep.27084
Malato, Y. et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J. Clin. Invest. 121, 4850–4860 (2011).
pubmed: 22105172
pmcid: 3226005
doi: 10.1172/JCI59261
Español–Suñer, R. et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143, 1564–1575.e7 (2012).
pubmed: 22922013
doi: 10.1053/j.gastro.2012.08.024
Español–Suñer, R., Lemaigre, F. P. & Leclercq, I. A. Reply: To PMID 22922013. Gastroenterology 145, 255–256 (2013).
pubmed: 23727487
doi: 10.1053/j.gastro.2013.05.037
Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719–724 (2013).
pubmed: 23520387
pmcid: 3639413
doi: 10.1101/gad.207803.112
Michalopoulos, G. K., Barua, L. & Bowen, W. C. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41, 535–544 (2005).
pubmed: 15726663
doi: 10.1002/hep.20600
Michalopoulos, G. K. & Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55 (2021).
pubmed: 32764740
doi: 10.1038/s41575-020-0342-4
Michalopoulos, G. K. The liver is a peculiar organ when it comes to stem cells. Am. J. Pathol. 184, 1263–1267 (2014).
pubmed: 24681248
pmcid: 4005979
doi: 10.1016/j.ajpath.2014.02.020
Schaub, J. R., Malato, Y., Gormond, C. & Willenbring, H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933–939 (2014).
pubmed: 25131204
pmcid: 4376310
doi: 10.1016/j.celrep.2014.07.003
Yanger, K. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340–349 (2014).
pubmed: 25130492
pmcid: 4505916
doi: 10.1016/j.stem.2014.06.003
Turner, R. et al. Human hepatic stem cell and maturational liver lineage biology. Hepatology 53, 1035–1045 (2011).
pubmed: 21374667
doi: 10.1002/hep.24157
Carpino, G. et al. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J. Anat. 220, 186–199 (2012).
pubmed: 22136171
doi: 10.1111/j.1469-7580.2011.01462.x
Lesage, G. et al. Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Gastroenterology 111, 1633–1644 (1996).
pubmed: 8942744
doi: 10.1016/S0016-5085(96)70027-6
Walesky, C. M. et al. Functional compensation precedes recovery of tissue mass following acute liver injury. Nat. Commun. 11, 5785 (2020).
pubmed: 33214549
pmcid: 7677389
doi: 10.1038/s41467-020-19558-3
Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).
pubmed: 22797301
pmcid: 3408746
doi: 10.1172/JCI63212
Sekiya, S. & Suzuki, A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J. Clin. Invest. 122, 3914–3918 (2012).
pubmed: 23023701
pmcid: 3484442
doi: 10.1172/JCI63065
Chen, Y.-J., Shen, C.-J., Yu, S.-H., Lin, C.-L. & Shih, H.-M. Increased risk of hepatocellular carcinoma in patients with traumatic liver injury. Medicine 101, e28837 (2022).
pubmed: 35147128
pmcid: 8830875
doi: 10.1097/MD.0000000000028837
He, G. et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155, 384–396 (2013).
pubmed: 24120137
pmcid: 4015514
doi: 10.1016/j.cell.2013.09.031
Ning, B.-F. et al. Hepatocyte nuclear factor 4α suppresses the development of hepatocellular carcinoma. Cancer Res. 70, 7640–7651 (2010).
pubmed: 20876809
doi: 10.1158/0008-5472.CAN-10-0824
Chen, T. et al. AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death Dis. 11, 822 (2020).
pubmed: 33009373
pmcid: 7532541
doi: 10.1038/s41419-020-03030-7
Goeroeg, D., Regoely-Merei, J., Paku, S., Kopper, L. & Nagy, P. Alpha-fetoprotein expression is a potential prognostic marker in hepatocellular carcinoma. World J. Gastroenterol. 11, 5015–5018 (2005).
doi: 10.3748/wjg.v11.i32.5015
Muguti, G., Tait, N., Richardson, A. & Little, J. M. Alpha‐fetoprotein expression in hepatocellular carcinoma: a clinical study. J. Gastroenterol. Hepatol. 7, 374–378 (1992).
pubmed: 1381228
doi: 10.1111/j.1440-1746.1992.tb01001.x
Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).
pubmed: 24264436
doi: 10.1038/ncomms3823
Li, Y., Wang, J. & Asahina, K. Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial–mesenchymal transition in liver injury. Proc. Natl Acad. Sci. USA 110, 2324–2329 (2013).
pubmed: 23345421
pmcid: 3568296
doi: 10.1073/pnas.1214136110
Chu, A. S. et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial‐to‐mesenchymal transition in murine models of hepatic fibrosis. Hepatology 53, 1685–1695 (2011).
pubmed: 21520179
doi: 10.1002/hep.24206
Scholten, D. et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 139, 987–998 (2010).
pubmed: 20546735
doi: 10.1053/j.gastro.2010.05.005
Taura, K. et al. Hepatocytes do not undergo epithelial‐mesenchymal transition in liver fibrosis in mice. Hepatology 51, 1027–1036 (2010).
pubmed: 20052656
doi: 10.1002/hep.23368
Auvinen, K. et al. Fenestral diaphragms and PLVAP associations in liver sinusoidal endothelial cells are developmentally regulated. Sci. Rep. 9, 15698 (2019).
pubmed: 31666588
pmcid: 6821839
doi: 10.1038/s41598-019-52068-x
Lu, Y. et al. Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discov. 7, 47 (2021).
pubmed: 34183665
pmcid: 8238952
doi: 10.1038/s41421-021-00266-1
Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394.e21 (2020). This article describes the use of single-cell RNA-seq of human fetal liver, HCC and mouse liver showing fetal-like reprogramming of endothelial cells and macrophages in HCC, suggesting a shared oncofetal immunosuppressive microenvironment.
pubmed: 32976798
doi: 10.1016/j.cell.2020.08.040
Maretti‐Mira, A. C., Wang, X., Wang, L. & DeLeve, L. D. Incomplete differentiation of engrafted bone marrow endothelial progenitor cells initiates hepatic fibrosis in the rat. Hepatology 69, 1259–1272 (2019).
pubmed: 30141211
doi: 10.1002/hep.30227
Wang, L. et al. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J. Clin. Invest. 122, 1567–1573 (2012).
pubmed: 22406533
pmcid: 3314456
doi: 10.1172/JCI58789
Liu, K., Jin, H. & Zhou, B. Genetic lineage tracing with multiple DNA recombinases: a user’s guide for conducting more precise cell fate mapping studies. J. Biol. Chem. 295, 6413–6424 (2020).
pubmed: 32213599
pmcid: 7212637
doi: 10.1074/jbc.REV120.011631
Masuyama, N., Mori, H. & Yachie, N. DNA barcodes evolve for high-resolution cell lineage tracing. Curr. Opin. Chem. Biol. 52, 63–71 (2019).
pubmed: 31212208
doi: 10.1016/j.cbpa.2019.05.014
Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).
pubmed: 34381231
pmcid: 8475179
doi: 10.1038/s41586-021-03634-9
Ma, X. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl Acad. Sci. USA 113, 2206–2211 (2016).
pubmed: 26858399
pmcid: 4776497
doi: 10.1073/pnas.1524510113
Ren, Y. et al. Developments and opportunities for 3D bioprinted organoids. Int. J. Bioprinting 7, 364 (2021).
doi: 10.18063/ijb.v7i3.364
Kang, D. et al. Bioprinting of multiscaled hepatic lobules within a highly vascularized construct. Small 16, 1905505 (2020).
doi: 10.1002/smll.201905505
Postic, C. & Magnuson, M. A. DNA excision in liver by an albumin–Cre transgene occurs progressively with age. Genesis 26, 149–150 (2000).
pubmed: 10686614
doi: 10.1002/(SICI)1526-968X(200002)26:2<149::AID-GENE16>3.0.CO;2-V
Schuler, M., Dierich, A., Chambon, P. & Metzger, D. Efficient temporally controlled targeted somatic mutagenesis in hepatocytes of the mouse. Genesis 39, 167–172 (2004).
pubmed: 15282742
doi: 10.1002/gene.20039
Wang, Y. et al. Genetic tracing of hepatocytes in liver homeostasis, injury, and regeneration. J. Biol. Chem. 292, 8594–8604 (2017).
pubmed: 28377509
pmcid: 5448089
doi: 10.1074/jbc.M117.782029
Kellendonk, C., Opherk, C., Anlag, K., Schütz, G. & Tronche, F. Hepatocyte‐specific expression of Cre recombinase. Genesis 26, 151–153 (2000).
pubmed: 10686615
doi: 10.1002/(SICI)1526-968X(200002)26:2<151::AID-GENE17>3.0.CO;2-E
Uetzmann, L., Burtscher, I. & Lickert, H. A mouse line expressing Foxa2‐driven Cre recombinase in node, notochord, floorplate, and endoderm. Genesis 46, 515–522 (2008).
pubmed: 18798232
doi: 10.1002/dvg.20410
Park, E. J. et al. System for tamoxifen‐inducible expression of cre‐recombinase from the Foxa2 locus in mice. Dev. Dyn. 237, 447–453 (2008).
pubmed: 18161057
doi: 10.1002/dvdy.21415
Sebae, G. K. E. et al. Single-cell murine genetic fate mapping reveals bipotential hepatoblasts and novel multi-organ endoderm progenitors. Development 145, dev168658 (2018).
pubmed: 30232173
pmcid: 6198474
doi: 10.1242/dev.168658
Lee, C. S., Friedman, J. R., Fulmer, J. T. & Kaestner, K. H. The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944–947 (2005).
pubmed: 15959514
doi: 10.1038/nature03649
Solar, M. et al. Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev. Cell 17, 849–860 (2009).
pubmed: 20059954
doi: 10.1016/j.devcel.2009.11.003
Rodrigo‐Torres, D. et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology 60, 1367–1377 (2014).
pubmed: 24700364
doi: 10.1002/hep.27078
Means, A. L., Xu, Y., Zhao, A., Ray, K. C. & Gu, G. A CK19CreERT knockin mouse line allows for conditional DNA recombination in epithelial cells in multiple endodermal organs. Genesis 46, 318–323 (2008).
pubmed: 18543299
pmcid: 3735352
doi: 10.1002/dvg.20397
Tannour‐Louet, M., Porteu, A., Vaulont, S., Kahn, A. & Vasseur‐Cognet, M. A tamoxifen‐inducible chimeric Cre recombinase specifically effective in the fetal and adult mouse liver. Hepatology 35, 1072–1081 (2002).
pubmed: 11981757
doi: 10.1053/jhep.2002.33164
Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).
pubmed: 19129762
pmcid: 2744041
doi: 10.1038/nature07619
Wohlfeil, S. A. et al. Hepatic endothelial Notch activation protects against liver metastasis by regulating endothelial-tumor cell adhesion independent of angiocrine signaling. Cancer Res. 79, 598–610 (2019).
pubmed: 30530502
doi: 10.1158/0008-5472.CAN-18-1752
Bianchi, R. et al. A transgenic Prox1-Cre-tdTomato reporter mouse for lymphatic vessel research. PLoS ONE 10, e0122976 (2015).
pubmed: 25849579
pmcid: 4388455
doi: 10.1371/journal.pone.0122976
Géraud, C. et al. GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. J. Clin. Invest. 127, 1099–1114 (2017).
pubmed: 28218627
pmcid: 5330741
doi: 10.1172/JCI90086
Kitto, L. J. & Henderson, N. C. Hepatic stellate cell regulation of liver regeneration and repair. Hepatol. Commun. 5, 358–370 (2021).
pubmed: 33681672
doi: 10.1002/hep4.1628
Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).
pubmed: 22566629
pmcid: 3386114
doi: 10.1073/pnas.1201840109
Kosar, K. et al. WNT7B regulates cholangiocyte proliferation and function during murine cholestasis. Hepatol. Commun. 5, 2019–2034 (2021).
pubmed: 34558852
pmcid: 8631094
doi: 10.1002/hep4.1784
He, J., Lu, H., Zou, Q. & Luo, L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146, 789–800.e8 (2014).
pubmed: 24315993
doi: 10.1053/j.gastro.2013.11.045
Choi, T., Ninov, N., Stainier, D. Y. R. & Shin, D. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146, 776–788 (2014).
pubmed: 24148620
doi: 10.1053/j.gastro.2013.10.019
Portmann, B. C. & Roberts, E. A. in Macsween’s Pathology of the Liver 6th edn (eds Burt, A. D., Portmann, B. C. & Ferrell, L. D.) 101–156 (Elsevier, 2012).
Alagille, D., Odièvre, M., Gautier, M. & Dommergues, J. P. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. J. Pediatr. 86, 63–71 (1975).
pubmed: 803282
doi: 10.1016/S0022-3476(75)80706-2
Alagille, D. et al. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J. Pediatr. 110, 195–200 (1987).
pubmed: 3806290
doi: 10.1016/S0022-3476(87)80153-1
Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet. 16, 243–251 (1997).
pubmed: 9207788
doi: 10.1038/ng0797-243
McDaniell, R. et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the Notch signaling pathway. Am. J. Hum. Genet. 79, 169–173 (2006).
pubmed: 16773578
pmcid: 1474136
doi: 10.1086/505332
Hofmann, J. J. et al. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 137, 4061–4072 (2010).
pubmed: 21062863
pmcid: 2976287
doi: 10.1242/dev.052118
Hartley, J. L., Davenport, M. & Kelly, D. A. Biliary atresia. Lancet 374, 1704–1713 (2009).
pubmed: 19914515
doi: 10.1016/S0140-6736(09)60946-6
Arikan, C. et al. Polymorphisms of the ICAM-1 gene are associated with biliary atresia. Dig. Dis. Sci. 53, 2000–2004 (2008).
pubmed: 18401716
doi: 10.1007/s10620-007-9914-1
Arikan, C. et al. Positive association of macrophage migration inhibitory factor gene-173G/C polymorphism with biliary atresia. J. Pediatr. Gastroenterol. Nutr. 42, 77–82 (2006).
pubmed: 16385258
doi: 10.1097/01.mpg.0000192247.55583.fa
Davit-Spraul, A., Baussan, C., Hermeziu, B., Bernard, O. & Jacquemin, E. CFC1 gene involvement in biliary atresia with polysplenia syndrome. J. Pediatr. Gastr Nutr. 46, 111–112 (2008).
doi: 10.1097/01.mpg.0000304465.60788.f4
Shih, H.-H. et al. Promoter polymorphism of the CD14 endotoxin receptor gene is associated with biliary atresia and idiopathic neonatal cholestasis. Pediatrics 116, 437–441 (2005).
pubmed: 16061600
doi: 10.1542/peds.2004-1900
Huang, Y.-H. et al. Upstream stimulatory factor 2 is implicated in the progression of biliary atresia by regulation of hepcidin expression. J. Pediatr. Surg. 43, 2016–2023 (2008).
pubmed: 18970934
doi: 10.1016/j.jpedsurg.2008.03.037
Yokoyama, T. et al. Reversal of left-right asymmetry: a situs inversus mutation. Science 260, 679–682 (1993).
pubmed: 8480178
doi: 10.1126/science.8480178
Shimadera, S. et al. The inv mouse as an experimental model of biliary atresia. J. Pediatr. Surg. 42, 1555–1560 (2007).
pubmed: 17848248
doi: 10.1016/j.jpedsurg.2007.04.018
Heslop, J. A., Pournasr, B., Liu, J.-T. & Duncan, S. A. GATA6 defines endoderm fate by controlling chromatin accessibility during differentiation of human-induced pluripotent stem cells. Cell Rep. 35, 109145 (2021).
pubmed: 34010638
pmcid: 8202205
doi: 10.1016/j.celrep.2021.109145
Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).
pubmed: 22056668
pmcid: 3219227
doi: 10.1101/gad.176826.111
Geusz, R. J. et al. Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors. Nat. Commun. 12, 6636 (2021).
pubmed: 34789735
pmcid: 8599738
doi: 10.1038/s41467-021-26950-0
Reizel, Y. et al. Collapse of the hepatic gene regulatory network in the absence of FoxA factors. Genes Dev. 34, 1039–1050 (2020).
pubmed: 32561546
pmcid: 7397852
doi: 10.1101/gad.337691.120
DeLaForest, A. et al. HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells. Development 138, 4143–4153 (2011).
pubmed: 21852396
pmcid: 3171218
doi: 10.1242/dev.062547
Hayhurst, G. P., Lee, Y.-H., Lambert, G., Ward, J. M. & Gonzalez, F. J. Hepatocyte nuclear factor 4α (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell Biol. 21, 1393–1403 (2001).
pubmed: 11158324
pmcid: 99591
doi: 10.1128/MCB.21.4.1393-1403.2001
Sosa-Pineda, B., Wigle, J. T. & Oliver, G. Hepatocyte migration during liver development requires Prox1. Nat. Genet. 25, 254–255 (2000).
pubmed: 10888866
doi: 10.1038/76996
Lüdtke, T. H. W., Christoffels, V. M., Petry, M. & Kispert, A. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology 49, 969–978 (2009).
pubmed: 19140222
doi: 10.1002/hep.22700
Mukherjee, S., French, D. L. & Gadue, P. Loss of TBX3 enhances pancreatic progenitor generation from human pluripotent stem cells. Stem Cell Rep. 16, 2617–2627 (2021).
doi: 10.1016/j.stemcr.2021.09.004
Thakur, A. et al. Hepatocyte nuclear factor 4‐alpha is essential for the active epigenetic state at enhancers in mouse liver. Hepatology 70, 1360–1376 (2019).
pubmed: 30933372
doi: 10.1002/hep.30631
Li, J., Ning, G. & Duncan, S. A. Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes Dev. 14, 464–474 (2000).
pubmed: 10691738
pmcid: 316377
doi: 10.1101/gad.14.4.464
Horisawa, K. et al. The dynamics of transcriptional activation by hepatic reprogramming factors. Mol. Cell 79, 660–676.e8 (2020).
pubmed: 32755593
doi: 10.1016/j.molcel.2020.07.012
Poncy, A. et al. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev. Biol. 404, 136–148 (2015).
pubmed: 26033091
doi: 10.1016/j.ydbio.2015.05.012
Coffinier, C. et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development 129, 1829–1838 (2002).
pubmed: 11934849
doi: 10.1242/dev.129.8.1829
Clotman, F. et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 129, 1819–1828 (2002).
pubmed: 11934848
doi: 10.1242/dev.129.8.1819
Campbell, S. A. et al. Signalling pathways and transcriptional regulators orchestrating liver development and cancer. Development 148, dev199814 (2021).
pubmed: 34478514
doi: 10.1242/dev.199814
Macchi, F. & Sadler, K. C. Unraveling the epigenetic basis of liver development, regeneration and disease. Trends Genet. 36, 587–597 (2020).
pubmed: 32487496
doi: 10.1016/j.tig.2020.05.002