Quantitative Assessment of a Dual Epidemic Caused by Tuberculosis and HIV in the Philippines.


Journal

Bulletin of mathematical biology
ISSN: 1522-9602
Titre abrégé: Bull Math Biol
Pays: United States
ID NLM: 0401404

Informations de publication

Date de publication:
21 05 2023
Historique:
received: 19 07 2022
accepted: 05 04 2023
medline: 23 5 2023
pubmed: 22 5 2023
entrez: 21 5 2023
Statut: epublish

Résumé

Tuberculosis (TB) and human immunodeficiency virus (HIV) are the two major public health emergencies in the Philippines. The country is ranked fourth worldwide in TB incidence cases despite national efforts and initiatives to mitigate the disease. Concurrently, the Philippines has the fastest-growing HIV epidemic in Asia and the Pacific region. The TB-HIV dual epidemic forms a lethal combination enhancing each other's progress, driving the deterioration of immune responses. In order to understand and describe the transmission dynamics and epidemiological patterns of the co-infection, a compartmental model for TB-HIV is developed. A class of people living with HIV (PLHIV) who did not know their HIV status is incorporated into the model. These unaware PLHIV who do not seek medical treatment are potential sources of new HIV infections that could significantly influence the disease transmission dynamics. Sensitivity analysis using the partial rank correlation coefficient is performed to assess model parameters that are influential to the output of interests. The model is calibrated using available Philippine data on TB, HIV, and TB-HIV. Parameters that are identified include TB and HIV transmission rates, progression rates from exposed to active TB, and from TB-latent with HIV to active infectious TB with HIV in the AIDS stage. Uncertainty analysis is performed to identify the degree of accuracy of the estimates. Simulations predict an alarming increase of 180% and 194% in new HIV and TB-HIV infections in 2025, respectively, relative to 2019 data. These projections underscore an ongoing health crisis in the Philippines that calls for a combined and collective effort by the government and the public to take action against the lethal combination of TB and HIV.

Identifiants

pubmed: 37211585
doi: 10.1007/s11538-023-01156-1
pii: 10.1007/s11538-023-01156-1
pmc: PMC10200076
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

56

Informations de copyright

© 2023. The Author(s), under exclusive licence to Society for Mathematical Biology.

Références

Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray A et al (2010) Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med 362(8):697–706. https://doi.org/10.1056/NEJMoa0905848
doi: 10.1056/NEJMoa0905848
Awoke TD, Semu MK (2018) Optimal control strategy for TB-HIV/AIDS co-infection model in the presence of behaviour modification. Processes 6(5):48. https://doi.org/10.3390/pr6050048
doi: 10.3390/pr6050048
Bhunu C, Garira W, Mukandavire Z (2009) Modeling HIV/AIDS and tuberculosis coinfection. Bull Math Biol 71(7):1745–1780. https://doi.org/10.1007/s11538-009-9423-9
doi: 10.1007/s11538-009-9423-9
Brown T, Peerapatanapokin W (2004) The Asian epidemic model: a process model for exploring HIV policy and programme alternatives in Asia. Sex Transm Infect 80(suppl 1):i19–i24. https://doi.org/10.1136/sti.2004.010165
doi: 10.1136/sti.2004.010165
Bruchfeld J, Correia-Neves M, Källenius G (2015) Tuberculosis and HIV coinfection. Cold Spring Harbor Perspect Med 5(7):a017871–a017871. https://doi.org/10.1101/cshperspect.a017871
doi: 10.1101/cshperspect.a017871
Cassels S, Clark SJ, Morris M (2008) Mathematical models for HIV transmission dynamics: tools for social and behavioral science research. J Acquir Immune Defic Syndr 47(Suppl 1):S34-9. https://doi.org/10.1097/QAI.0b013e3181605da3
doi: 10.1097/QAI.0b013e3181605da3
CDC. HIV/AIDS. https://www.cdc.gov/hiv/basics/whatishiv.html
Chaisson RE, Churchyard GJ (2010) Recurrent tuberculosis: relapse, reinfection, and HIV. J Infect Dis 201:653–655. https://doi.org/10.1086/650531
doi: 10.1086/650531
Chowell G (2017) Fitting dynamic models to epidemic outbreaks with quantified uncertainty: a primer for parameter uncertainty, identifiability, and forecasts. Infect Dis Model 2(3):379–398. https://doi.org/10.1016/j.idm.2017.08.001
doi: 10.1016/j.idm.2017.08.001
Crisostomo S (2018) DOH: Philippines has highest tuberculosis cases in ASEAN. The Philippine Star. https://www.philstar.com/headlines/2018/09/26/1854836/doh-philippines-has-highest-tuberculosis-cases-asean
Department of Health (2019) Philippines TB joint program review. https://ntp.doh.gov.ph/download/joint-program-review-2019-report/
Department of Health (2020) Updated Philippine strategic TB elimination plan phase 1: 2020–2023. https://doh.gov.ph/node/24443
Department of Health - Epidemiology Bureau (2020) A briefer on the Philippine HIV estimates. https://doh.gov.ph/sites/default/files/publications/A%20Briefer%20on%20the%20PH%20Estimates%202020_08232021.pdf
Diedrich CR, Flynn JL (2011) HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect. Immun. 79(4):1407–1417. https://doi.org/10.1128/IAI.01126-10
doi: 10.1128/IAI.01126-10
Diekmann O, Heesterbeek JAP, Metz JA (1990) On the definition and the computation of the basic reproduction ratio [Formula: see text] in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382. https://doi.org/10.1007/BF00178324
doi: 10.1007/BF00178324
DOH (2020) National tuberculosis program manual of procedures 6th edition. https://doh.gov.ph/sites/default/files/publications/NTP_MOP_6th_Edition.pdf
Dokubo EK, Shiraishi RW, Young PW, Neal JJ, Aberle-Grasse J, Honwana N et al (2014) Awareness of HIV status, prevention knowledge and condom use among people living with HIV in Mozambique. PLoS ONE 9(9):1–6. https://doi.org/10.1371/journal.pone.0106760
doi: 10.1371/journal.pone.0106760
Espinal MA, Peréz EN, Baéz J, Hénriquez L, Fernández K, Lopez M et al (2000) Infectiousness of Mycobacterium tuberculosis in HIV-1-infected patients with tuberculosis: a prospective study. Lancet 355(9200):275–280
doi: 10.1016/S0140-6736(99)04402-5
Estadilla CDS, de los Reyes AA (2020) Optimal strategies for mitigating the HIV/AIDS epidemic in the Philippines. Math Methods Appl Sci 43(18):10690–10710. https://doi.org/10.1002/mma.6979
doi: 10.1002/mma.6979
Gangcuangco LMA (2019) HIV crisis in the Philippines: urgent actions needed. Lancet Public Health 4(2):E84. https://doi.org/10.1016/S2468-2667(18)30265-2
doi: 10.1016/S2468-2667(18)30265-2
Getahun H, Gunneberg C, Granich R, Nunn P (2010) HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis 50(Supplement-3):S201–S207. https://doi.org/10.1086/651492
doi: 10.1086/651492
HIV/AIDS Data hub. TB-HIV Factsheet 2018 Asia and the Pacific. https://www.aidsdatahub.org/sites/default/files/highlight-reference/document/DataHub_TB-HIV_Fact_Sheet_2018.pdf
King BM (2022) The influence of social desirability on sexual behavior surveys: a review. Arch Sex Behav 51(3):1495–1501. https://doi.org/10.1007/s10508-021-02197-0
doi: 10.1007/s10508-021-02197-0
Kim S, Aurelio A, Jung E (2018) Mathematical model and intervention strategies for mitigating tuberculosis in the Philippines. J Theor Biol 443:100–112. https://doi.org/10.1016/j.jtbi.2018.01.026
doi: 10.1016/j.jtbi.2018.01.026
Kim S, de los Reyes VAA, Jung E (2020) Country-specific intervention strategies for top three TB burden countries using mathematical model. PLoS ONE 15(4):964e0230
doi: 10.1371/journal.pone.0230964
Kumar S, Jain S (2018) Assessing the effects of treatment in HIV-TB co-infection model. Eur Phys J Plus 133(8):294. https://doi.org/10.1140/epjp/i2018-12117-8
doi: 10.1140/epjp/i2018-12117-8
Kwan C, Ernst JD (2011) HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24(2):351–376. https://doi.org/10.1128/CMR.00042-10
doi: 10.1128/CMR.00042-10
Long EF, Vaidya NK, Brandeau ML (2008) Controlling co-epidemics: analysis of HIV and tuberculosis infection dynamics. Oper Res 56(6):1366–1381. https://doi.org/10.1287/opre.1080.0571
doi: 10.1287/opre.1080.0571
Magombedze G, Garira W, Mwenje E (2010) Modeling the TB/HIV-1 co-infection and the effects of its treatment. Math Popul Stud 17(1):12–64
doi: 10.1080/08898480903467241
Mallela A, Lenhart S, Vaidya NK (2016) HIV-TB co-infection treatment: modeling and optimal control theory perspectives. J Comput Appl Math 307:143–161. https://doi.org/10.1016/j.cam.2016.02.051
doi: 10.1016/j.cam.2016.02.051
Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196. https://doi.org/10.1016/j.jtbi.2008.04.011
doi: 10.1016/j.jtbi.2008.04.011
Mesfin YM, Hailemariam D, Biadglign S, Kibret KT (2014) Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis. PLoS ONE 9(1):e82235. https://doi.org/10.1371/journal.pone.0082235
doi: 10.1371/journal.pone.0082235
Modjarrad K, Vermund SH (2010) Effect of treating co-infections on HIV-1 viral load: a systematic review. Lancet Infect Dis 10(7):455–463. https://doi.org/10.1016/S1473-3099(10)70093-1
doi: 10.1016/S1473-3099(10)70093-1
Naresh R, Tripathi A (2005) Modelling and analysis of HIV-TB co-infection in a variable size population. Math Model Anal 10(3):275–286
doi: 10.3846/13926292.2005.9637287
Okosun KO, Makinde OD, Takaidza I (2013) Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives. Appl Math Model 37(6):3802–3820. https://doi.org/10.1016/j.apm.2012.08.004
doi: 10.1016/j.apm.2012.08.004
Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G (2012) Tuberculosis and HIV co-infection. PLoS Pathog 8(2):1–7. https://doi.org/10.1371/journal.ppat.1002464
doi: 10.1371/journal.ppat.1002464
Philstar. DOH: only 33% of HIV positive Pinoys seek free treatment due to stigma. https://www.philstar.com/headlines/2017/12/01/1764282/doh-only-33-hiv-positive-pinoys-seek-free-treatment-due-stigma
Roeger LIW, Feng Z, Castillo-Chávez C (2009) Modeling TB and HIV co-infections. Math Biosci Eng 6(4):815–837. https://doi.org/10.3934/mbe.2009.6.815
doi: 10.3934/mbe.2009.6.815
Schinazi RB (2003) Can HIV invade a population which is already sick? Bull Braz Math Soc 34(3):479–488. https://doi.org/10.1007/s00574-003-0025-0
doi: 10.1007/s00574-003-0025-0
Schwartzman K, Menzies D (2000) How long are TB patients infectious? CMAJ 163(2):157–158
Sergeev R, Colijn C, Murray M, Cohen T (2012) Modeling the dynamic relationship between HIV and the risk of drug-resistant tuberculosis. Sci Transl Med 4(135):135ra67
doi: 10.1126/scitranslmed.3003815
Sharomi O, Podder CN, Gumel AB, Song B (2008) Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Math Biosci Eng 5(1):145–174. https://doi.org/10.3934/mbe.2008.5.145
doi: 10.3934/mbe.2008.5.145
Silva CJ, Torres DF (2015) A TB-HIV/AIDS coinfection model and optimal control treatment. arXiv:1501.03322
Stover J, Glaubius R, Teng Y, Kelly S, Brown T, Hallett TB et al (2021) Modeling the epidemiological impact of the UNAIDS 2025 targets to end AIDS as a public health threat by 2030. PLoS Med 18(10):1–21. https://doi.org/10.1371/journal.pmed.1003831
doi: 10.1371/journal.pmed.1003831
Sullivan ZA, Wong EB, Ndung’u T, Kasprowicz VO, Bishai WR (2015) Latent and active tuberculosis infection increase immune activation in individuals co-infected with HIV. EBioMedicine 2(4):334–340. https://doi.org/10.1016/j.ebiom.2015.03.005
Tanvi, Aggarwal R (2021) Estimating the impact of antiretroviral therapy on HIV-TB co-infection: optimal strategy prediction. Int J Biomath 14(01):2150004. https://doi.org/10.1142/S1793524521500042
Tasman H et al (2016) An optimal treatment control of TB-HIV coinfection. Int J Math Math Sci. https://doi.org/10.1155/2016/8261208
doi: 10.1155/2016/8261208
UNAIDS (2021a) Community-led HIV services stepped up in the Philippines during the COVID-19 pandemic. https://www.unaids.org/en/keywords/philippines
UNAIDS (2021b) Philippines key facts on HIV. https://www.aidsdatahub.org/country-profiles/philippines
UNAIDS (2021c) 2025 AIDS Targets. https://aidstargets2025.unaids.org/#section-targets
UNAIDS (2022) Global data on HIV epidemiology and response. https://aidsinfo.unaids.org/
Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48. https://doi.org/10.1016/S0025-5564(02)00108-6
doi: 10.1016/S0025-5564(02)00108-6
Villasin KJB, Lao AR, Rodriguez EM (2017) A dynamical analysis of tuberculosis in the Philippines. Philipp Sci Lett 10(1):29–37
Webster West R, Thompson JR (1997) Modeling the impact of HIV on the spread of tuberculosis in the United States. Math Biosci 143(1):35–60. https://doi.org/10.1016/S0025-5564(97)00001-1
doi: 10.1016/S0025-5564(97)00001-1
WHO (2019) It’s time to end TB in the Philippines. https://www.who.int/philippines/news/commentaries/detail/it-s-time-to-end-tb-in-the-philippines#:~:text=Tuberculosis%20is%20an%20airborne%20disease.%20About%201%20million,the%20number%20one%20killer%20among%20all%20infectious%20diseases
WHO (2022) Global tuberculosis programme. https://www.who.int/teams/global-tuberculosis-programme/data
WHO Europe (2006) Management of tuberculosis and HIV coinfection: clinical protocol for the WHO European region
Wilson DP, Law MG, Grulich AE, Cooper DA, Kaldor JM (2008) Relation between HIV viral load and infectiousness: a model-based analysis. Lancet 372(9635):314–320. https://doi.org/10.1016/S0140-6736(08)61115-0
doi: 10.1016/S0140-6736(08)61115-0
World Bank (2021) Life expectancy at birth, total (years). Available from: https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=PH
World Health Organization (2018) Tuberculosis. World Health Organization. http://www.wpro.who.int/philippines/areas/communicable_diseases/tb/story_continuation_tb_area_page/en/
World Health Organization (2019) Tuberculosis. https://www.who.int/tb/country/data/download/en/
World Health Organization (2021) Global Tuberculosis Report 2021. Licence: CC BY-NC-SA 3.0 IGO
World Health Organization (2022a) Tuberculosis. https://www.who.int/news-room/fact-sheets/detail/tuberculosis
World Health Organization (2022b) HIV/AIDS. https://www.who.int/news-room/fact-sheets/detail/hiv-aids

Auteurs

Monica Torres (M)

Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, Los Baños, 4031, Laguna, Philippines.

Jerrold Tubay (J)

Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, Los Baños, 4031, Laguna, Philippines. jmtubay@up.edu.ph.

Aurelio de losReyes (A)

Institute of Mathematics, University of the Philippines Diliman, Quezon City, 1101, Philippines.
Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH