Purinergic P2X
Carotid body
Heart failure
Purinergic P2X3 receptors
Journal
Purinergic signalling
ISSN: 1573-9546
Titre abrégé: Purinergic Signal
Pays: Netherlands
ID NLM: 101250499
Informations de publication
Date de publication:
22 May 2023
22 May 2023
Historique:
received:
27
04
2023
accepted:
11
05
2023
medline:
22
5
2023
pubmed:
22
5
2023
entrez:
21
5
2023
Statut:
aheadofprint
Résumé
Heart failure is associated with multiple mechanisms, including sympatho-excitation, and is one of the leading causes of death worldwide. Enhanced carotid body chemoreflex function is strongly related to excessive sympathetic nerve activity and sleep-disordered breathing in heart failure. How to reduce the excitability of the carotid body is still scientifically challenging. Both clinical and experimental evidence have suggested that targeting purinergic receptors is of great potential to combat heart failure. In a recent study, Lataro et al. (Lataro et al. in Nat Commun 14:1725, 5) demonstrated that targeting purinergic P2X
Identifiants
pubmed: 37211586
doi: 10.1007/s11302-023-09945-y
pii: 10.1007/s11302-023-09945-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : EFSD/Novo Nordisk Foundation Future Leaders Awards
ID : NNF22SA0081227
Organisme : Swedish Heart and Lung Foundation
ID : 20200326 and 20220264
Informations de copyright
© 2023. The Author(s).
Références
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK (2021) Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 101(3):1177–1235. https://doi.org/10.1152/physrev.00039.2019
doi: 10.1152/physrev.00039.2019
pubmed: 33570461
pmcid: 8526340
Niewinski P, Janczak D, Rucinski A, Tubek S, Engelman ZJ, Piesiak P, Jazwiec P, Banasiak W, Fudim M, Sobotka PA, Javaheri S, Hart EC, Paton JF, Ponikowski P (2017) Carotid body resection for sympathetic modulation in systolic heart failure: results from first-in-man study. Eur J Heart Fail 19(3):391–400. https://doi.org/10.1002/ejhf.641
doi: 10.1002/ejhf.641
pubmed: 27647775
Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circ Res 120(1):207–228. https://doi.org/10.1161/CIRCRESAHA.116.309726
doi: 10.1161/CIRCRESAHA.116.309726
pubmed: 28057794
Wernly B, Zhou Z (2020) More purinergic receptors deserve attention as therapeutic targets for the treatment of cardiovascular disease. Am J Physiol Heart Circ Physiol 319(4):H723–H729. https://doi.org/10.1152/ajpheart.00417.2020
doi: 10.1152/ajpheart.00417.2020
pubmed: 32822211
Lataro RM, Moraes DJA, Gava FN, Omoto ACM, Silva CAA, Brognara F, Alflen L, Brazão V, Colato RP, de Prado JC, Ford AP, Salgado HC, Paton JFR (2023) P2X3 receptor antagonism attenuates the progression of heart failure. Nat Commun 14(1):1725. https://doi.org/10.1038/s41467-023-37077-9
doi: 10.1038/s41467-023-37077-9
pubmed: 36977675
pmcid: 10050083
Conde SV, Monteiro EC, Sacramento JF (2017) Purines and carotid body: new roles in pathological conditions. Front Pharmacol 12(8):913. https://doi.org/10.3389/fphar.2017.00913
doi: 10.3389/fphar.2017.00913
Fagerlund MJ, Kåhlin J, Ebberyd A, Schulte G, Mkrtchian S, Eriksson LI (2010) The human carotid body: expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology 113(6):1270–1279. https://doi.org/10.1097/ALN.0b013e3181fac061
doi: 10.1097/ALN.0b013e3181fac061
pubmed: 20980909
Pijacka W, Moraes DJ, Ratcliffe LE, Nightingale AK, Hart EC, da Silva MP, Machado BH, McBryde FD, Abdala AP, Ford AP, Paton JF (2016) Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nat Med 22(10):1151–1159. https://doi.org/10.1038/nm.4173
doi: 10.1038/nm.4173
pubmed: 27595323
pmcid: 5750397
Prasad M, Fearon IM, Zhang M, Laing M, Vollmer C, Nurse CA (2001) Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: role in chemosensory signalling. J Physiol 537(Pt 3):667–677. https://doi.org/10.1111/j.1469-7793.2001.00667.x
doi: 10.1111/j.1469-7793.2001.00667.x
pubmed: 11744746
pmcid: 2278999
Pubill D, Dayanithi G, Siatka C, Andrés M, Dufour MN, Guillon G, Mendre C (2001) ATP induces intracellular calcium increases and actin cytoskeleton disaggregation via P2x receptors. Cell Calcium 29(5):299–309. https://doi.org/10.1054/ceca.2000.0194
doi: 10.1054/ceca.2000.0194
pubmed: 11292387
Homma K, Niino Y, Hotta K, Oka K (2008) Ca(2+) influx through P2X receptors induces actin cytoskeleton reorganization by the formation of cofilin rods in neurites. Mol Cell Neurosci 37(2):261–270. https://doi.org/10.1016/j.mcn.2007.10.001
doi: 10.1016/j.mcn.2007.10.001
pubmed: 17993279
Sun C, Jiao T, Merkus D, Duncker DJ, Mustafa SJ, Zhou Z (2019) Activation of adenosine A2A but not A2B receptors is involved in uridine adenosine tetraphosphate-induced porcine coronary smooth muscle relaxation. J Pharmacol Sci 141(1):64–69. https://doi.org/10.1016/j.jphs.2019.09.006
doi: 10.1016/j.jphs.2019.09.006
pubmed: 31640919
pmcid: 7418061
Zhou R, Dang X, Sprague RS, Mustafa SJ, Zhou Z (2020) Alteration of purinergic signaling in diabetes: focus on vascular function. J Mol Cell Cardiol 140:1–9. https://doi.org/10.1016/j.yjmcc.2020.02.004
doi: 10.1016/j.yjmcc.2020.02.004
pubmed: 32057736
pmcid: 7425578
Seol SH, Chung G (2022) Estrogen-dependent regulation of transient receptor potential vanilloid 1 (TRPV1) and P2X purinoceptor 3 (P2X3): implication in burning mouth syndrome. J Dent Sci 17(1):8–13. https://doi.org/10.1016/j.jds.2021.06.007
doi: 10.1016/j.jds.2021.06.007
pubmed: 35028015