The change in metabolic activity of a large benthic foraminifera as a function of light supply.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 05 2023
Historique:
received: 06 01 2023
accepted: 16 05 2023
medline: 24 5 2023
pubmed: 23 5 2023
entrez: 22 5 2023
Statut: epublish

Résumé

We studied metabolic activity of the symbiont-bearing large benthic foraminifer Heterostegina depressa under different light conditions. Besides the overall photosynthetic performance of the photosymbionts estimated by means of variable fluorescence, the isotope uptake (

Identifiants

pubmed: 37217641
doi: 10.1038/s41598-023-35342-x
pii: 10.1038/s41598-023-35342-x
pmc: PMC10203359
doi:

Substances chimiques

Isotopes 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8240

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. The Author(s).

Références

Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3(1), 78–82 (2013).
doi: 10.1038/nclimate1627
Schmidt, C., Kucera, M. & Uthicke, S. Combined effects of warming and ocean acidification on coral reef Foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs 33(3), 805–818 (2014).
doi: 10.1007/s00338-014-1151-4
Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G. & Pandolfi, J. M. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19(1), 291–302 (2013).
doi: 10.1111/gcb.12035
Uthicke, S., Vogel, N., Doyle, J., Schmidt, C. & Humphrey, C. Interactive effects of climate change and eutrophication on the dinoflagellate-bearing benthic foraminifer Marginopora vertebralis. Coral Reefs 31(2), 401–414 (2012).
doi: 10.1007/s00338-011-0851-2
Hikami, M. et al. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophys. Res. Lett. 38(19), L19601 (2011).
doi: 10.1029/2011GL048501
Yamamoto, S. et al. Threshold of carbonate saturation state determined by CO
doi: 10.5194/bg-9-1441-2012
Baker, R. D., Hallock, P., Moses, E. F., Williams, D. E. & Ramirez, A. Larger foraminifers of the Florida reef tract, USA: Distribution patterns on reef-rubble habitats. J. Foraminifer. Res. 39(4), 267–277 (2009).
doi: 10.2113/gsjfr.39.4.267
Lintner, M., Schagerl, M., Lintner, B., Nagy, M. & Heinz, P. Photosynthetic performance of symbiont-bearing foraminifera Heterostegina depressa affected by sunscreens. Sci. Rep. 12(1), 1–7 (2022).
doi: 10.1038/s41598-022-06735-1
Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M. & Donnelly, K. B. Foraminifera as bioindicators in coral reef assessment and monitoring: The FORAM index. Environ. Monit. Assess. 81(1), 221–238 (2003).
doi: 10.1023/A:1021337310386 pubmed: 12620018
Hallock, P. Symbiont-bearing foraminifera. In Modern foraminifera 123–139 (Springer, Dordrecht, 1999).
Langer, M. R. Assessing the contribution of foraminiferan protists to global ocean carbonate production 1. J. Eukaryot. Microbiol. 55(3), 163–169 (2008).
doi: 10.1111/j.1550-7408.2008.00321.x pubmed: 18460153
Prazeres, M. & Renema, W. Evolutionary significance of the microbial assemblages of large benthic Foraminifera. Biol. Rev. 94(3), 828–848 (2019).
doi: 10.1111/brv.12482 pubmed: 30450723
Renema, W. Terrestrial influence as a key driver of spatial variability in large benthic foraminiferal assemblage composition in the Central Indo-Pacific. Earth Sci. Rev. 177, 514–544 (2018).
doi: 10.1016/j.earscirev.2017.12.013
Hallock, P. Algal symbiosis: A mathematical analysis. Mar. Biol. 62(4), 249–255 (1981).
doi: 10.1007/BF00397691
Lee, J. J. Algal symbiosis in larger foraminifera. Symbiosis (2006).
Bernhard, J. M., Edgcomb, V. P., Casciotti, K. L., McIlvin, M. R. & Beaudoin, D. J. Denitrification likely catalyzed by endobionts in an allogromiid foraminifer. ISME J. 6(5), 951–960 (2012).
doi: 10.1038/ismej.2011.171 pubmed: 22134648
Lee, J. J. & Anderson, O. R. Biology of Foraminifera (Academic Press, 1991).
Pecheux, M. J. F. Ecomorphology of a recent largeforaminifer, Operculina ammonoides. Geobios 28(5), 529–566 (1995).
doi: 10.1016/S0016-6995(95)80209-6
Hallock, P. Light dependence in Amphistegina. J. Foramin. Res. 11(1), 40 (1981).
doi: 10.2113/gsjfr.11.1.40
Nobes, K., Uthicke, S. & Henderson, R. Is light the limiting factor for the distribution of benthic symbiont bearing foraminifera on the Great Barrier Reef?. J. Exp. Mar. Biol. Ecol. 363(1–2), 48–57 (2008).
doi: 10.1016/j.jembe.2008.06.015
Röttger, R. Ecological observations Heterostegina depressa (Foraminifera, Nummulitidae) in the laboratory and its natural habitat. In International Symposium of Benthic Foraminifera of Continental Margins, vol. 1, 75–79 (1976).
Uthicke, S. & Altenrath, C. Water column nutrients control growth and C: N ratios of symbiont-bearing benthic foraminifera on the Great Barrier Reef, Australia. Limnol. Oceanogr. 55(4), 1681–1696 (2010).
doi: 10.4319/lo.2010.55.4.1681
Fujita, K., Omori, A., Yokoyama, Y., Sakai, S. & Iryu, Y. Sea-level rise during Termination II inferred from large benthic foraminifers: IODP Expedition 310, Tahiti Sea Level. Mar. Geol. 271(1–2), 149–155 (2010).
doi: 10.1016/j.margeo.2010.01.019
Parkhill, J., Mailett, G. & Cullen, J. Fluorescence-based maximal quantim yield fpr PSII as a diagnostic of nutrient stress. J. Phycol. 37, 517–529 (2001).
doi: 10.1046/j.1529-8817.2001.037004517.x
Lintner, M. et al. Assimilation of particular organic matter and dissolved organic or inorganic compounds by Cribroelphidium selseyense (Foraminifera). Front. Mar. Sci. 8, 1709 (2021).
doi: 10.3389/fmars.2021.778148
Ter Kuile, B., Erez, J. & Padan, E. Mechanisms for the uptake of inorganic carbon by two species of symbiont-bearing foraminifera. Mar. Biol. 103(2), 241–251 (1989).
doi: 10.1007/BF00543354
Röttger, R., Krüger, R. & de Rijk, S. Trimorphism in foraminifera (Protozoa)—Verification of an old hypothesis. Eur. J. Protistol. 25(3), 226–228 (1990).
doi: 10.1016/S0932-4739(11)80173-2 pubmed: 23195968
Langer, M. R. & Gehring, C. A. Bacteria farming; a possible feeding strategy of some smaller motile Foraminifera. J. Foraminifer. Res. 23(1), 40–46 (1993).
doi: 10.2113/gsjfr.23.1.40
Bernhard, J. M., Tsuchiya, M. & Nomaki, H. Ultrastructural observations on prokaryotic associates of benthic foraminifera: Food, mutualistic symbionts, or parasites?. Mar. Micropaleontol. 138, 33–45 (2018).
doi: 10.1016/j.marmicro.2017.09.001
Raimbault, P. & Mingazzini, M. Diurnal variations of intracellular nitrate storage by marine diatoms: Effects of nutritional state. J. Exp. Mar. Biol. Ecol. 112(3), 217–232 (1987).
doi: 10.1016/0022-0981(87)90070-0
Ross, B. J. & Hallock, P. Dormancy in the foraminifera: A review. J. Foraminifer. Res. 46(4), 358–368 (2016).
doi: 10.2113/gsjfr.46.4.358
Hachiya, T. & Sakakibara, H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot. 68(10), 2501–2512 (2017).
pubmed: 28007951
Marschner, H. (ed.) Marschner’s Mineral Nutrition of Higher Plants (Academic press, 2011).
Dortch, Q. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. Oldendorf 61(1), 183–201 (1990).
doi: 10.3354/meps061183
Fujita, K., Kanda, Y. & Hosono, T. Light is an important limiting factor for the vertical distribution of the largest extant benthic foraminifer Cycloclypeus carpenteri. J. Earth Sci. 33(6), 1460–1468 (2022).
doi: 10.1007/s12583-022-1612-6
Schmidt, C., Heinz, P., Kucera, M. & Uthicke, S. Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol. Oceanogr. 56(5), 1587–1602 (2011).
doi: 10.4319/lo.2011.56.5.1587
Eder, W., Briguglio, A. & Hohenegger, J. Growth of Heterostegina depressa under natural and laboratory conditions. Mar. Micropaleontol. 122, 27–43 (2016).
doi: 10.1016/j.marmicro.2015.11.005 pubmed: 28100933
Breitler, J. C. et al. Full moonlight-induced circadian clock entrainment in Coffea arabica. BMC Plant Biol. 20(1), 1–11 (2020).
doi: 10.1186/s12870-020-2238-4
Lintner, M., Wildner, M., Lintner, B., Wanek, W. & Heinz, P. Spectroscopic analysis of sequestered chloroplasts in Elphidium williamsoni (Foraminifera). J. Photochem. Photobiol. B 238, 112623 (2023).
doi: 10.1016/j.jphotobiol.2022.112623 pubmed: 36549082
Lintner, M. et al. Effect of light on the metabolism of the foraminifera Cribroelphidium selseyense lacking photosymbionts and kleptoplasts. J. Photochem. Photobiol. 11, 100133 (2022).
doi: 10.1016/j.jpap.2022.100133

Auteurs

Michael Lintner (M)

Department of Palaeontology, University of Vienna, Vienna, Austria.

Bianca Lintner (B)

Department of Palaeontology, University of Vienna, Vienna, Austria.

Michael Schagerl (M)

Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.

Wolfgang Wanek (W)

Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.

Petra Heinz (P)

Department of Palaeontology, University of Vienna, Vienna, Austria. petra.heinz@univie.ac.at.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Foraminifera France Bays Environmental Monitoring Geologic Sediments

Classifications MeSH