First-in-human prediction of chronic pain state using intracranial neural biomarkers.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
06 2023
Historique:
received: 13 04 2021
accepted: 18 04 2023
medline: 8 6 2023
pubmed: 23 5 2023
entrez: 22 5 2023
Statut: ppublish

Résumé

Chronic pain syndromes are often refractory to treatment and cause substantial suffering and disability. Pain severity is often measured through subjective report, while objective biomarkers that may guide diagnosis and treatment are lacking. Also, which brain activity underlies chronic pain on clinically relevant timescales, or how this relates to acute pain, remains unclear. Here four individuals with refractory neuropathic pain were implanted with chronic intracranial electrodes in the anterior cingulate cortex and orbitofrontal cortex (OFC). Participants reported pain metrics coincident with ambulatory, direct neural recordings obtained multiple times daily over months. We successfully predicted intraindividual chronic pain severity scores from neural activity with high sensitivity using machine learning methods. Chronic pain decoding relied on sustained power changes from the OFC, which tended to differ from transient patterns of activity associated with acute, evoked pain states during a task. Thus, intracranial OFC signals can be used to predict spontaneous, chronic pain state in patients.

Identifiants

pubmed: 37217725
doi: 10.1038/s41593-023-01338-z
pii: 10.1038/s41593-023-01338-z
pmc: PMC10330878
mid: NIHMS1903355
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1090-1099

Subventions

Organisme : NINDS NIH HHS
ID : U24 NS113637
Pays : United States
Organisme : NINDS NIH HHS
ID : UH3 NS109556
Pays : United States
Organisme : NINDS NIH HHS
ID : UH3 NS115631
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Wide-Ranging Online Data for Epidemiologic Research (WONDER) (Centers for Disease Control and Prevention, 2016); https://wonder.cdc.gov/
FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource (FDA, 2016).
Davis, K. D. et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat. Rev. Neurol. 16, 381–400 (2020).
pubmed: 32541893 pmcid: 7326705 doi: 10.1038/s41582-020-0362-2
Coghill, R. C., McHaffie, J. G. & Yen, Y.-F. Neural correlates of interindividual differences in the subjective experience of pain. Proc. Natl Acad. Sci. USA 100, 8538–8542 (2003).
pubmed: 12824463 pmcid: 166264 doi: 10.1073/pnas.1430684100
Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R. & Dostrovsky, J. O. Pain-related neurons in the human cingulate cortex. Nat. Neurosci. 2, 403–405 (1999).
pubmed: 10321241 doi: 10.1038/8065
Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).
pubmed: 23574118 pmcid: 3691100 doi: 10.1056/NEJMoa1204471
Ploner, M., Sorg, C. & Gross, J. Brain rhythms of pain. Trends Cogn. Sci. 21, 100–110 (2017).
pubmed: 28025007 pmcid: 5374269 doi: 10.1016/j.tics.2016.12.001
Baliki, M. N. et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 26, 12165–12173 (2006).
pubmed: 17122041 pmcid: 4177069 doi: 10.1523/JNEUROSCI.3576-06.2006
Baliki, M. N. et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 15, 1117–1119 (2012).
pubmed: 22751038 pmcid: 3411898 doi: 10.1038/nn.3153
Corder, G. et al. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363, 276–281 (2019).
pubmed: 30655440 doi: 10.1126/science.aap8586
Tan, L. L. et al. A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity. Nat. Neurosci. 20, 1591–1601 (2017).
pubmed: 28920932 doi: 10.1038/nn.4645
Lee, J.-J. et al. A neuroimaging biomarker for sustained experimental and clinical pain. Nat. Med. 27, 174–182 (2021).
pubmed: 33398159 pmcid: 8447264 doi: 10.1038/s41591-020-1142-7
Lee, M. et al. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J. Neurosci. 35, 5247–5259 (2015).
pubmed: 25834050 pmcid: 4380998 doi: 10.1523/JNEUROSCI.3494-14.2015
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).
pubmed: 9252330 doi: 10.1126/science.277.5328.968
Boccard, S. G. J. et al. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain. World Neurosurg. 106, 625–637 (2017).
pubmed: 28710048 doi: 10.1016/j.wneu.2017.06.173
Kringelbach, M. L. & Rolls, E. T. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72, 341–372 (2004).
pubmed: 15157726 doi: 10.1016/j.pneurobio.2004.03.006
Kucyi, A. & Davis, K. D. The dynamic pain connectome. Trends Neurosci. 38, 86–95 (2015).
pubmed: 25541287 doi: 10.1016/j.tins.2014.11.006
Kringelbach, M. L. The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6, 691–702 (2005).
pubmed: 16136173 doi: 10.1038/nrn1747
Damasio, A. R. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Phils. Trans. R. Soc. B 351, 1413–1420 (1996).
doi: 10.1098/rstb.1996.0125
Becker, S., Gandhi, W., Pomares, F., Wager, T. D. & Schweinhardt, P. Orbitofrontal cortex mediates pain inhibition by monetary reward. Soc. Cogn. Affect Neurosci. 12, 651–661 (2017).
pubmed: 28119505 pmcid: 5390724 doi: 10.1093/scan/nsw173
Rich, E. L. & Wallis, J. D. Decoding subjective decisions from orbitofrontal cortex. Nat. Neurosci. 19, 973–980 (2016).
pubmed: 27273768 pmcid: 4925198 doi: 10.1038/nn.4320
Rao, V. R. et al. Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Curr. Biol. 28, 3893–3902.e4 (2018).
pubmed: 30503621 doi: 10.1016/j.cub.2018.10.026
Kohoutová, L. et al. Individual variability in brain representations of pain. Nat. Neurosci. 25, 749–759 (2022).
pubmed: 35637368 pmcid: 9435464 doi: 10.1038/s41593-022-01081-x
Čeko, M., Kragel, P. A., Woo, C.-W., López-Solà, M. & Wager, T. D. Common and stimulus-type-specific brain representations of negative affect. Nat. Neurosci. 25, 760–770 (2022).
pubmed: 35637370 doi: 10.1038/s41593-022-01082-w
Petrovic, P., Kalso, E., Petersson, K. M. & Ingvar, M. Placebo and opioid analgesia–imaging a shared neuronal network. Science 295, 1737–1740 (2002).
pubmed: 11834781 doi: 10.1126/science.1067176
Swann, N. C. et al. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson’s disease. J. Neurosurg. 128, 605–616 (2017).
pubmed: 28409730 pmcid: 5641233 doi: 10.3171/2016.11.JNS161162
Giordano, J. J. et al. Proceedings of the fourth annual deep brain stimulation think tank: a review of emerging issues and technologies. Front Integr. Neurosci. 10, 38 (2016).
pubmed: 27920671 pmcid: 5119052
Strand, L. I., Ljunggren, A. E., Bogen, B., Ask, T. & Johnsen, T. B. The short-form McGill pain questionnaire as an outcome measure: test–retest reliability and responsiveness to change. Eur. J. Pain. 12, 917–925 (2008).
pubmed: 18289893 doi: 10.1016/j.ejpain.2007.12.013
Hawker, G. A., Mian, S., Kendzerska, T. & French, M. Measures of adult pain: visual analog scale for pain (VAS pain), numeric rating scale for pain (NRS pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short form-36 bodily pain scale (SF-36 BPS), and measure of intermittent and constant osteoarthritis pain (ICOAP). Arthritis Care Res. 63, S240–S252 (2011).
doi: 10.1002/acr.20543
Salgado, J. F. Transforming the area under the normal curve (AUC) into Cohen’s d, Pearson’s r pb, odds ratio, and natural log odds ratio: two conversion tables. Psy. Intervention 10, 35–47 (2018).
Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).
pubmed: 17678852 doi: 10.1016/j.neuron.2007.07.012
Hashmi, J. A. et al. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136, 2751–2768 (2013).
pubmed: 23983029 pmcid: 3754458 doi: 10.1093/brain/awt211
Reckziegel, D. et al. Deconstructing biomarkers for chronic pain: context- and hypothesis-dependent biomarker types in relation to chronic pain. Pain 160, S37–S48 (2019).
pubmed: 31008848 pmcid: 6478400 doi: 10.1097/j.pain.0000000000001529
Boccard, S. G. J. et al. Targeting the affective component of chronic pain: a case series of deep brain stimulation of the anterior cingulate cortex. Neurosurgery 74, 628–637 (2014).
pubmed: 24739362 doi: 10.1227/NEU.0000000000000321
Kulkarni, B. et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur. J. Neurosci. 21, 3133–3142 (2005).
pubmed: 15978022 doi: 10.1111/j.1460-9568.2005.04098.x
Derbyshire, S. W. G. et al. Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. Neuroimage 16, 158–168 (2002).
pubmed: 11969326 doi: 10.1006/nimg.2002.1066
Shih, H.-C., Yang, J.-W., Lee, C.-M. & Shyu, B.-C. Spontaneous cingulate high-current spikes signal normal and pathological pain states. J. Neurosci. 39, 5128–5142 (2019).
pubmed: 31023834 pmcid: 6595960 doi: 10.1523/JNEUROSCI.2590-18.2019
Brodersen, K. H. et al. Decoding the perception of pain from fMRI using multivariate pattern analysis. Neuroimage 63, 1162–1170 (2012).
pubmed: 22922369 doi: 10.1016/j.neuroimage.2012.08.035
Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).
pubmed: 26447583 pmcid: 4605134 doi: 10.1016/j.neuron.2015.09.034
Colgin, L. L. et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357 (2009).
pubmed: 19924214 doi: 10.1038/nature08573
Wang, X.-J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010).
pubmed: 20664082 doi: 10.1152/physrev.00035.2008
van Ede, F., Quinn, A. J., Woolrich, M. W. & Nobre, A. C. Neural oscillations: sustained rhythms or transient burst-events? Trends Neurosci. 41, 415–417 (2018).
pubmed: 29739627 pmcid: 6024376 doi: 10.1016/j.tins.2018.04.004
Feingold, J., Gibson, D. J., DePasquale, B. & Graybiel, A. M. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc. Natl Acad. Sci. USA 112, 13687–13692 (2015).
pubmed: 26460033 pmcid: 4640760 doi: 10.1073/pnas.1517629112
Foss, J. M., Apkarian, A. V. & Chialvo, D. R. Dynamics of pain: fractal dimension of temporal variability of spontaneous pain differentiates between pain states. J. Neurophysiol. 95, 730–736 (2006).
pubmed: 16282201 doi: 10.1152/jn.00768.2005
Rothaug, J., Weiss, T. & Meissner, W. How simple can it get? Measuring pain with NRS items or binary items. Clin. J. Pain. 29, 224–232 (2013).
pubmed: 23369928 doi: 10.1097/AJP.0b013e31824c5d7a
Gilron, R. et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. 39, 1078–1085 (2021).
pubmed: 33941932 pmcid: 8434942 doi: 10.1038/s41587-021-00897-5
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).
pubmed: 9931268 doi: 10.1006/nimg.1998.0395
Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
pubmed: 11832223 doi: 10.1016/S0896-6273(02)00569-X
Hamilton, L. S., Chang, D. L., Lee, M. B. & Chang, E. F. Semi-automated anatomical labeling and inter-subject warping of high-density intracranial recording electrodes in electrocorticography. Front. Neuroinform. 11, 62 (2017).
pubmed: 29163118 pmcid: 5671481 doi: 10.3389/fninf.2017.00062
Kubanek, J. & Schalk, G. NeuralAct: a tool to visualize electrocortical (ECoG) activity on a three-dimensional model of the cortex. Neuroinform 13, 167–174 (2015).
doi: 10.1007/s12021-014-9252-3
Rich, A. Comparative pain scale. The Cluster Headache Support Group https://clusterheadachewarriors.org/wp-content/uploads/2017/03/0-10_Pain_Scale.pdf (2014).
Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S. & Mitra, P. Chronux: a platform for analyzing neural signals. J. Neurosci. Methods 192, 146–151 (2010).
pubmed: 20637804 pmcid: 2934871 doi: 10.1016/j.jneumeth.2010.06.020
Sani, O. G. et al. Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36, 954–961 (2018).
pubmed: 30199076 doi: 10.1038/nbt.4200
Bishop, C. Pattern Recognition and Machine Learning (Springer, 2006).
Stanslaski, S. et al. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 410–421 (2012).
pubmed: 22275720 doi: 10.1109/TNSRE.2012.2183617
Afshar, P. et al. A translational platform for prototyping closed-loop neuromodulation systems. Front. Neural Circuits 6, 117 (2013).
pubmed: 23346048 pmcid: 3551193 doi: 10.3389/fncir.2012.00117
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Shanechi, M. M. Brain–machine interfaces from motor to mood. Nat. Neurosci. 22, 1554–1564 (2019).
pubmed: 31551595 doi: 10.1038/s41593-019-0488-y
Yekutieli, D. & Benjamini, Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Stat. Plan. Inference 82, 171–196 (1999).
doi: 10.1016/S0378-3758(99)00041-5
Box, G. E. P., Jenkins, G. M. & Reinsel., G. C. Time Series Analysis: Forecasting and Control (Prentice Hall, 1994).
North, B. V., Curtis, D. & Sham, P. C. A note on the calculation of empirical P Values from Monte Carlo procedures. Am. J. Hum. Genet 71, 439–441 (2002).
pubmed: 12111669 pmcid: 379178 doi: 10.1086/341527

Auteurs

Prasad Shirvalkar (P)

UCSF Department of Anesthesiology and Perioperative Care, Division of Pain Medicine, University of California San Francisco, San Francisco, CA, USA. prasad.shirvalkar@ucsf.edu.
UCSF Department of Neurology, University of California San Francisco, San Francisco, CA, USA. prasad.shirvalkar@ucsf.edu.
UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA. prasad.shirvalkar@ucsf.edu.
UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA. prasad.shirvalkar@ucsf.edu.

Jordan Prosky (J)

UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.

Gregory Chin (G)

UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.

Parima Ahmadipour (P)

Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.

Omid G Sani (OG)

Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.

Maansi Desai (M)

Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, USA.

Ashlyn Schmitgen (A)

UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.

Heather Dawes (H)

UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.

Maryam M Shanechi (MM)

Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.

Philip A Starr (PA)

UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA.

Edward F Chang (EF)

UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH