Widefield oct-angiography-based classification of sickle cell retinopathy.
Image processing
OCT Angiography
Sickle cell retinopathy
Widefield imaging
Journal
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
27
01
2023
accepted:
10
05
2023
revised:
24
04
2023
medline:
23
10
2023
pubmed:
23
5
2023
entrez:
23
5
2023
Statut:
ppublish
Résumé
To assess the capillary non-perfusion in different concentric sectors on widefield optical coherence tomography angiography (WF-OCTA) and to correlate the ratio of non-perfusion (RNP) to the severity of sickle cell retinopathy (SCR). This retrospective, cross-sectional study included eyes of patients with various sickle cell disease (SCD) genotypes having undergone WF-OCTA and ultra-widefield color fundus photography (UWF-CFP). Eyes were grouped as no SCR, non-proliferative SCR or proliferative SCR. RNP was assessed on WF-OCTA montage in different field-of-view (FOV) sectors centered on the fovea: 0-10-degrees circle excluding the foveal avascular zone, the 10-30-degrees circle excluding the optic nerve, the 30-60-degrees circle, and the full 60-degrees circle. Forty-two eyes of twenty-eight patients were included. Within each SCR group, mean RNP of the FOV 30-60 sector was higher than all other sectors (p < 0.05). Mean RNP of all sectors were significatively different between no SCR group and proliferative SCR group (p < 0.05). To distinguish no SCR versus non-proliferative SCR FOV 30-60 had a good sensitivity and specificity of 41.67% and 93.33%, respectively (cutoff RNP > 22.72%, AUC = 0.75, 95% CI 0.56-0.94, p = 0.028). To differentiate non-proliferative versus proliferative SCR, FOV 0-10 had good sensitivity and specificity of 33.33% and 91.67%, respectively (cutoff RNP > 18.09, AUC = 0.73, 95% CI 0.53 to 0.93, p = 0.041). To discern no SCR versus proliferative SCR, all sectors had optimal sensitivity and specificity (p < 0.05). WF OCTA-based RNP provides non-invasive diagnostic information regarding the presence and severity of SCR, and correlates with disease stage in certain FOV sectors.
Identifiants
pubmed: 37219613
doi: 10.1007/s00417-023-06115-z
pii: 10.1007/s00417-023-06115-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2805-2812Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Rees DC, Williams TN, Gladwin MT (2010) Sickle-cell disease. Lancet (London, England) 376:2018–2031. https://doi.org/10.1016/S0140-6736(10)61029-X
doi: 10.1016/S0140-6736(10)61029-X
pubmed: 21131035
Stuart MJ, Nagel RL (2004) Sickle-cell disease. Lancet (London, England) 364:1343–1360. https://doi.org/10.1016/S0140-6736(04)17192-4
doi: 10.1016/S0140-6736(04)17192-4
pubmed: 15474138
Goldberg MF (1971) Natural history of untreated proliferative sickle retinopathy. Arch Ophthalmol (Chicago, Ill 1960) 85:428–37. https://doi.org/10.1001/archopht.1971.00990050430006
doi: 10.1001/archopht.1971.00990050430006
Goldberg MF (1971) Classification and pathogenesis of proliferative sickle retinopathy. Am J Ophthalmol 71:649–665. https://doi.org/10.1016/0002-9394(71)90429-6
doi: 10.1016/0002-9394(71)90429-6
pubmed: 5546311
Yawn BP, Buchanan GR, Afenyi-Annan AN et al (2014) Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA 312:1033–1048. https://doi.org/10.1001/jama.2014.10517
doi: 10.1001/jama.2014.10517
pubmed: 25203083
Condon PI, Serjeant GR (1980) Behaviour of untreated proliferative sickle retinopathy. Br J Ophthalmol 64:404–411. https://doi.org/10.1136/bjo.64.6.404
doi: 10.1136/bjo.64.6.404
pubmed: 7387965
pmcid: 1043717
Moriarty BJ, Acheson RW, Condon PI, Serjeant GR (1988) Patterns of visual loss in untreated sickle cell retinopathy. Eye (Lond) 2(Pt 3):330–335. https://doi.org/10.1038/eye.1988.62
doi: 10.1038/eye.1988.62
pubmed: 3402630
Brasileiro F, Martins TT, Campos SB et al (2015) Macular and peripapillary spectral domain optical coherence tomography changes in sickle cell retinopathy. Retina (Philadelphia, Pa.) 35(2):257–263. https://doi.org/10.1097/IAE.0000000000000309
doi: 10.1097/IAE.0000000000000309
pubmed: 25072646
Hoang QV, Chau FY, Shahidi M, Lim JI (2011) Central macular splaying and outer retinal thinning in asymptomatic sickle cell patients by spectral-domain optical coherence tomography. Am J Ophthalmol 151(6):990-994.e1. https://doi.org/10.1016/j.ajo.2010.12.010
doi: 10.1016/j.ajo.2010.12.010
pubmed: 21457923
pmcid: 3697103
Mathew R, Bafiq R, Ramu J et al (2015) Spectral domain optical coherence tomography in patients with sickle cell disease. The British J Ophthalmology 99(7):967–972. https://doi.org/10.1136/bjophthalmol-2014-305532
doi: 10.1136/bjophthalmol-2014-305532
Coscas G, Lupidi M, Coscas F (2017) Optical Coherence Tomography Angiography in Diabetic Maculopathy. Developments in Ophthalmology 60:38–49. https://doi.org/10.1159/000459688
doi: 10.1159/000459688
pubmed: 28427063
Sanfilippo CJ, Klufas MA, Sarraf D, Tsui I (2015) Optical coherence tomography angiography of sickle cell maculopathy. Retin Cases Brief Rep 9:360–362. https://doi.org/10.1097/ICB.0000000000000210
doi: 10.1097/ICB.0000000000000210
pubmed: 26505863
Minvielle W, Caillaux V, Cohen SY et al (2016) Macular Microangiopathy in Sickle Cell Disease Using Optical Coherence Tomography Angiography. Am J Ophthalmol 164:137–44.e1. https://doi.org/10.1016/j.ajo.2015.12.023
doi: 10.1016/j.ajo.2015.12.023
pubmed: 26748057
Han IC, Linz MO, Liu TYA et al (2018) Correlation of ultra-widefield fluorescein angiography and OCT angiography in sickle cell retinopathy. Ophthalmol Retin 2:599–605. https://doi.org/10.1016/j.oret.2017.10.011
doi: 10.1016/j.oret.2017.10.011
Wang F, Saraf SS, Zhang Q et al (2020) Ultra-widefield protocol enhances automated classification of diabetic retinopathy severity with OCT angiography. Ophthalmol Retin 4:415–424. https://doi.org/10.1016/j.oret.2019.10.018
doi: 10.1016/j.oret.2019.10.018
Jumar A, Harazny JM, Ott C et al (2016) Retinal Capillary Rarefaction in Patients with Type 2 Diabetes Mellitus. PloS one 11(12):e0162608. https://doi.org/10.1371/journal.pone.0162608
Cho M, Kiss S (2011) Detection and monitoring of sickle cell retinopathy using ultra wide-field color photography and fluorescein angiography. Retina (Philadelphia, Pa.) 31(4):738–747. https://doi.org/10.1097/IAE.0b013e3181f049ec
Han IC, Tadarati M, Pacheco KD, Scott AW (2017) Evaluation of macular vascular abnormalities identified by optical coherence tomography angiography in sickle cell disease. Am J Ophthalmol 177:90–99. https://doi.org/10.1016/j.ajo.2017.02.007
doi: 10.1016/j.ajo.2017.02.007
pubmed: 28212878