Vapor-Phase Synthesis of Molecularly Imprinted Polymers on Nanostructured Materials at Room-Temperature.

molecularly imprinted polymers optical sensors porous silicon protein detection synthetic receptors vapor-phase polymerization

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
Sep 2023
Historique:
revised: 27 04 2023
received: 17 03 2023
medline: 24 5 2023
pubmed: 24 5 2023
entrez: 24 5 2023
Statut: ppublish

Résumé

Molecularly imprinted polymers (MIPs) have recently emerged as robust and versatile artificial receptors. MIP synthesis is carried out in liquid phase and optimized on planar surfaces. Application of MIPs to nanostructured materials is challenging due to diffusion-limited transport of monomers within the nanomaterial recesses, especially when the aspect ratio is >10. Here, the room temperature vapor-phase synthesis of MIPs in nanostructured materials is reported. The vapor phase synthesis leverages a >1000-fold increase in the diffusion coefficient of monomers in vapor phase, compared to liquid phase, to relax diffusion-limited transport and enable the controlled synthesis of MIPs also in nanostructures with high aspect ratio. As proof-of-concept application, pyrrole is used as the functional monomer thanks to its large exploitation in MIP preparation; nanostructured porous silicon oxide (PSiO

Identifiants

pubmed: 37222612
doi: 10.1002/smll.202302274
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2302274

Subventions

Organisme : European Union Horizon Europe programme
ID : 101046946

Informations de copyright

© 2023 The Authors. Small published by Wiley-VCH GmbH.

Références

B. T. S. Bui, K. Haupt, Anal. Bioanal. Chem. 2010, 398, 2481.
M. Cieplak, W. Kutner, Trends Biotechnol. 2016, 34, 922.
J. Wackerlig, P. A. Lieberzeit, Sens Actuators B Chem 2015, 207 (Part A), 144.
O. S. Ahmad, T. S. Bedwell, C. Esen, A. Garcia-Cruz, S. A. Piletsky, Trends Biotechnol. 2019, 3, 294.
E. Mazzotta, T. Di Giulio, C. Malitesta, Electrochemical Sensing of Macromolecules Based on Molecularly Imprinted Polymers: Challenges, Successful Strategies, and Opportunities. 2022, 414, 5165.
A. Chiappini, L. Pasquardini, A. M. Bossi, Sensors 2020, 20, 5069.
K. Haupt, P. X. Medina Rangel, B. T. S. Bui, Chem. Rev. 2020, 120, 9554.
K. Haupt, K. Mosbach, Trends Biotechnol. 1998, 16, 468.
K. Haupt, Chem. Commun. (Camb). 2003, 2, 171.
E. Mazzotta, T. Di Giulio, C. Malitesta, Anal. Bioanal. Chem. 2022. 5165, https://doi.org/10.1007/S00216-022-03981-0.
T. Di Giulio, E. Mazzotta, C. Malitesta, Biosensors 2020, 11, 3.
T. Di Giulio, A. Barca, T. Verri, M. De Gennaro, G. Giancane, E. Mazzotta, C. Malitesta, Sens Actuators B Chem 2023, 133589. https://doi.org/10.1016/J.SNB.2023.133589.
A. Herrera-Chacón, X. Cetó, M. Del Valle, Anal. Bioanal. Chem. 2021, 413, 6117.
R. D'Aurelio, I. Chianella, J. A. Goode, I. E. Tothill, Biosensors 2020, 10, https://doi.org/10.3390/bios10030022.
T. Kamra, S. Chaudhary, C. Xu, L. Montelius, J. Schnadt, L. Ye, J. Colloid Interface Sci. 2016, 461, https://doi.org/10.1016/j.jcis.2015.09.009.
U. Arshad, A. Mujahid, P. Lieberzeit, A. Afzal, S. Z. Bajwa, N. Iqbal, S. Roshan, RSC Adv. 2020, 10, 34355.
R. Gui, H. Guo, H. Jin, Nanoscale Adv 2019, 1, 3325.
C. Unger, P. A. Lieberzeit, React. Funct. Polym. 2021, 161, 104855.
A. M. Gavrilă, E. B. Stoica, T. V. Iordache, A. Sârbu, Appl. Sci. 2022, 12, 3080.
X. Qiu, X. Y. Xu, Y. Liang, Y. Hua, H. Guo, J. Chromatogr. A 2016, 1429, 79.
X. Qiu, X. Y. Xu, Y. Liang, H. Guo, Food Chem. 2018, 258, 295.
A. V. Linares, A. Falcimaigne-Cordin, L. A. Gheber, K. Haupt, Small 2011, 7, 2318.
E. Paruli, O. Soppera, K. Haupt, C. Gonzato, ACS Appl Polym Mater 2021, 3, 4769.
R. Batul, T. Tamanna, A. Khaliq, A. Yu, Biomater. Sci. 2017, 5, 1204.
Y. Liu, L. Liu, Y. He, Q. He, H. Ma, Biosens. Bioelectron. 2016, 77, 886.
M. J. Garcia-Soto, K. Haupt, C. Gonzato, Polym. Chem. 2017, 8, 4830.
S. Patra, E. Roy, R. Madhuri, P. K. Sharma, Biosens. Bioelectron. 2015, 66, https://doi.org/10.1016/j.bios.2014.10.076.
H. Y. Lee, B. S. Kim, Biosens. Bioelectron. 2009, 25, 587.
M. Hu, P. Huang, L. Suo, F. Wu, Microchim. Acta 2018, 185, https://doi.org/10.1007/s00604-018-2826-2.
M. Zhang, X. Zhang, X. He, L. Chen, Y. Zhang, Nanoscale 2012, 4, 3141.
S. Subrahmanyam, A. Guerreiro, A. Poma, E. Moczko, E. Piletska, S. Piletsky, Eur. Polym. J. 2013, 49, 100.
A. R. Guerreiro, I. Chianella, E. Piletska, M. J. Whitcombe, S. A. Piletsky, Biosens. Bioelectron. 2009, 24, 2740.
G. O. Ince, E. Armagan, H. Erdogan, F. Buyukserin, L. Uzun, G. Demirel, ACS Appl. Mater. Interfaces 2013, 5, 6447.
R. Xing, Y. Wen, Y. Dong, Y. Wang, Q. Zhang, Z. Liu, Anal. Chem. 2019, 91, 9993.
R. Xing, Z. Guo, H. Lu, Q. Zhang, Z. Liu, Sci. Bull. 2022, 67, 278.
Z. Guo, R. Xing, M. Zhao, Y. Li, H. Lu, Z. Liu, Adv. Sci. 2021, 8, 2101713.
F. A. Harraz, M. S. Salem, T. Sakka, Y. H. Ogata, Electrochim. Acta 2008, 53, 3734.
F. A. Harraz, J. Electrochem. Soc. 2006, 153, C349.
Z. Chen, V. Robbiano, G. M. Paternò, G. Carnicella, A. Debrassi, A. A. La Mattina, S. Mariani, A. Minotto, G. Egri, L. Dähne, F. Cacialli, G. Barillaro, Adv. Opt. Mater. 2021, 9, 2100036.
C. S. Peyratout, L. Dähne, Angew. Chem., Int. Ed. 2004, 43, 3762.
Z. Zhang, S. Xu, J. Li, H. Xiong, H. Peng, L. Chen, J. Agric. Food Chem. 2012, 60, 180.
S. Mariani, V. Robbiano, L. M. Strambini, A. Debrassi, G. Egri, L. Dähne, G. Barillaro, Nat. Commun. 2018, 9, https://doi.org/10.1038/s41467-018-07723-8.
M. Corsi, A. Paghi, S. Mariani, G. Golinelli, A. Debrassi, G. Egri, G. Leo, E. Vandini, A. Vilella, L. Dähne, D. Giuliani, G. Barillaro, Adv. Sci. 2022, 2202062, 2202062.
S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, G. Barillaro, ACS Sens. 2016, 1, 1471.
S. Mariani, L. M. Strambini, G. Barillaro, Anal. Chem. 2016, 88, 8502.
S. Mariani, A. Paghi, A. A. La Mattina, A. Debrassi, L. Dähne, G. Barillaro, ACS Appl. Mater. Interfaces 2019, 11, 43731.
A. Jane, R. Dronov, A. Hodges, N. H. Voelcker, Trends Biotechnol. 2009, 27, 230.
A. Paghi, L. Strambini, F. F. Toia, M. Sambi, M. Marchesi, R. Depetro, M. Morelli, G. Barillaro, Adv. Electron. Mater. 2020, 6, https://doi.org/10.1002/aelm.202000615.
V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, M. R. Ghadiri, Science (80-) 1997, 278, 840.
D. N. Kumar, N. Pinker, G. Shtenberg, ACS Sens. 2020, 5, 1969.
L. De Stefano, I. Rea, I. Rendina, L. Rotiroti, M. Rossi, S. D'Auria, Phys. status solidi 2006, 203, 886.
V. Robbiano, G. M. Paternò, A. A. La Mattina, S. G. Motti, G. Lanzani, F. Scotognella, G. Barillaro, ACS Nano 2018, 12, 4536.
B. Sciacca, F. Frascella, A. Venturello, P. Rivolo, E. Descrovi, F. Giorgis, F. Geobaldo, Sens Actuators B Chem 2009, 137, 467.
C. A. Barrios, S. Carrasco, M. Francesca, P. Yurrita, F. Navarro-Villoslada, M. C. Moreno-Bondi, Sens Actuators B Chem 2012, 161, 607.
A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, T. M. Benson, Thin Solid Films 1996, 276, 143.
G. Rong, J. D. Ryckman, R. L. Mernaugh, S. M. Weiss, Appl. Phys. Lett. 2008, 93, 161109.
S. A. Rinne, F. García-Santamaría, P. V. Braun, Nat. Photonics 2008, 2, 52.
C. Pacholski, Sensors 2013, 13, 4694.
G. Di Francia, V. La Ferrara, S. Manzo, S. Chiavarini, Biosens. Bioelectron. 2005, 21, 661.
M. P. Stewart, J. M. Buriak, Adv. Mater. 2000, 12, 859.
L. M. Bonanno, L. A. DeLouise, Anal. Chem. 2010, 82, 714.
T. Guinan, M. Ronci, H. Kobus, N. H. Voelcker, Talanta 2012, 99, 791.
S. Dhanekar, S. Jain, Biosens. Bioelectron. 2013, 41, 54.
M. Terracciano, I. Rea, N. Borbone, R. Moretta, G. Oliviero, G. Piccialli, L. De Stefano, Mol. 2019, 24, 2216.
C. Chiappini, in Porous Silicon for Biomedical Applications, Woodhead Publishing, Helsinki, Finland 2021, pp. 545-570.https://doi.org/10.1016/B978-0-12-821677-4.00006-9.
J. Kim, D. Sohn, Y. Sung, E. R. Kim, Synth. Met. 2003, 132, 309.
H. Niu, H. Zhou, H. Wang, T. Lin, H. Niu, H. Zhou, H. Wang, T. Lin, Macromol. Mater. Eng. 2016, 301, 707.
A. Turco, S. Corvaglia, E. Mazzotta, Biosens. Bioelectron. 2015, 63, 240.
M. Díaz-Álvarez, E. Mazzotta, C. Malitesta, A. Martín-Esteban, J. Mol. Recognit. 2014, 27, 415.
N. Ktari, N. Fourati, C. Zerrouki, M. Ruan, M. Seydou, F. Barbaut, F. Nal, N. Yaakoubi, M. M. Chehimi, R. Kalfat, RSC Adv. 2015, 5, 88666.
V. Ratautaite, R. Boguzaite, E. Brazys, A. Ramanaviciene, E. Ciplys, M. Juozapaitis, R. Slibinskas, M. Bechelany, A. Ramanavicius, Electrochim. Acta 2022, 403, 139581.
B. Schweiger, J. Kim, Y. J. Kim, M. Ulbricht, Sensors (Basel). 2015, 15, 4870.
J. Erdòssy, V. Horváth, A. Yarman, F. W. Scheller, R. E. Gyurcsányi, Trends Analyt Chem 2016, 79, 179.
R. Fitzsimmons, N. Amin, V. N. Uversky, Understanding the Roles of Intrinsic Disorder in Subunits of Hemoglobin and the Disease Process of Sickle Cell Anemia. 2016, 4 e1248273. https://doi.org/10.1080/21690707.2016.1248273.
D. J. Schaer, P. W. Buehler, A. I. Alayash, J. D. Belcher, G. M. Vercellotti, Blood 2013, 121, 1276.
H. H. Billett, in Clinical Methods: The History, Physical, and Laboratory Examinations, Eds. H. Walker, W. Hall, J. Hurst, Butterworths, Boston 1990, pp. 763-763.
G. Lee, S. Choi, K. Kim, J. M. Yun, J. S. Son, S. M. Jeong, S. M. Kim, S. M. Park, J Am Heart Assoc 2018, 7. https://doi.org/10.1161/JAHA.117.007723.
T. Shimakawa, D. E. Bild, J Clin Epidemiol 1993, 46, 1257.
K. T. Khaw, N. Wareham, Curr. Opin. Lipidol. 2006, 17, 637.
M. Chonchol, C. Nielson, Hemoglobin Levels and Coronary Artery Disease. 2008, 155, 494-498.
D. E. Houghton, I. Koh, A. Ellis, N. S. Key, D. R. Douce, G. Howard, M. Cushman, M. Safford, N. A. Zakai, Am J Hematol 2020, 95, 258.
Y. Saylan, F. Yilmaz, E. Özgür, A. Derazshamshir, H. Yavuz, A. Denizli, Sensors (Basel). 2017, 17. https://doi.org/10.3390/S17040898
S. Li, S. Cao, M. J. Whitcombe, S. A. Piletsky, Prog. Polym. Sci. 2014, 39, 145.
M. Trojanowicz, In Combinatorial Methods for Chemical and Biological Sensors, Eds. R. A. Potyrailo, V. M. Mirsky, Springer Verlag, New York, USA 2009, 52. https://doi.org/10.1007/978-0-387-73713-3.
X. Chen, N. Yu, L. Zhang, Z. Liu, Z. Wang, Z. Chen, RSC Adv. 2015, 5, 96888.
O. Niwa, M. Hikita, T. Tamamura, Appl. Phys. Lett. 1998, 46, 444.
J. S. Andrew, E. J. Anglin, E. C. Wu, M. Y. Chen, L. Cheng, W. R. Freeman, M. J. Sailor, Adv. Funct. Mater. 2010, 20, 4168.
M. Y. Chen, M. J. Sailor, Anal. Chem. 2011, 83, 7186.
Y. Yong, X. Lou, S. Li, C. Yang, X. Yin, Comput. Math. with Appl. 2014, 67, 412.
J. Marc, S. R. M. Madou, Chemical Sensing with Solid State Devices 1989. https://doi.org/10.1016/c2009-0-22258-6.
S. Mohammed, A. K. Sunkara, C. E. Walike, G. Gadikota, Front. Clim. 2021, 3. https://doi.org/10.3389/fclim.2021.713708.
K. Wu, X. Li, C. Wang, W. Yu, Z. Chen, Ind. Eng. Chem. Res. 2015, 54, 3225.
S. Y. Yoo, J. S. Roh, J. Kim, W. Kim, H. B. Park, H. W. Kim, ACS Appl. Nano Mater. 2022, 5, 7029.
J. Jiang, L. Zhu, L. Zhu, B. Zhu, Y. Xu, Langmuir 2011, 27, 14180.
Y. Ding, L.-T. Weng, M. Yang, Z. Yang, X. Lu, N. Huang, Y. Leng, Langmuir 2014, 30, 12258.
A. G. Shard, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2020, 38, 041201.
M. A. Isaacs, J. Davies-Jones, P. R. Davies, S. Guan, R. Lee, D. J. Morgan, R. Palgrave, Mater. Chem. Front. 2021, 5, 7931.
A. G. Shard, S. J. Spencer, Surf. Interface Anal. 2017, 49, 1256.
C. Malitesta, I. Losito, L. Sabbatini, P. G. Zambonin, J Electron Spectros Relat Phenomena 1995, 76 (C), 629.
E. De Giglio, M. R. Guascito, L. Sabbatini, G. Zambonin, Biomaterials 2001, 22, 2609.
E. De Giglio, L. Sabbatini, P. G. Zambonin, J Biomater Sci Polym Ed 2012, 10, 845.
T. Di Giulio, E. Mazzotta, C. Malitesta, Biosens 2020, 11, 3.
J. T. Kuenstner, K. H. Norris, W. F. McCarthy, Appl. Spectrosc. 1994, 48, 484.
M. Rendell, E. Anderson, W. Schlueter, J. Mailliard, D. Honigs, R. Rosenthal, Clin. Lab. Haematol. 2003, 25, 93.
T. Bodley, M. Chan, L. Clarfield, O. Levi, A. Longmore, W. Lin, D. Yip, S. Orla, J. O. Friedrich, L. K. Hicks, Blood 2019, 134, 57.
A. Shander, H. L. Corwin, Transfus Med Rev 2020, 34, 195.
M. L. Compton, P. C. Szklarski, G. S. Booth, Arch Pathol Lab Med 2018, 142, 358.
E. Verheyen, J. P. Schillemans, M. Van Wijk, M. A. Demeniex, W. E. Hennink, C. F. Van Nostrum, Biomaterials 2011, 32, 3008.
T. Eleftheriadis, G. Pissas, V. Liakopoulos, Front Immunol 2016, 7, 279.
R. J. Umpleby, S. C. Baxter, Y. Chen, R. N. Shah, K. D. Shimizu, Anal. Chem. 2001, 73, 4584.
R. J. Ansell, In Advances in Biochemical Engineering/Biotechnology, Springer Science and Business Media Deutschland GmbH, Cham, Germany 2015, 150, 51-93.

Auteurs

Elisabetta Mazzotta (E)

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Tiziano Di Giulio (T)

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Stefano Mariani (S)

Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy.

Martina Corsi (M)

Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy.

Cosimino Malitesta (C)

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Giuseppe Barillaro (G)

Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy.

Classifications MeSH