Parasympathetic and sympathetic control of emmetropization in chick.


Journal

Experimental eye research
ISSN: 1096-0007
Titre abrégé: Exp Eye Res
Pays: England
ID NLM: 0370707

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 17 02 2023
revised: 04 05 2023
accepted: 15 05 2023
pmc-release: 01 07 2024
medline: 19 6 2023
pubmed: 26 5 2023
entrez: 25 5 2023
Statut: ppublish

Résumé

Emmetropization can be altered by temporal visual stimulation and the spectral properties of the visual environment. The goal of the current experiment is to test the hypothesis that there is an interaction between these properties and autonomic innervation. For that purpose, selective lesions of the autonomic nervous system were performed in chickens followed by temporal stimulation. Parasympathetic lesioning involved transection of both the ciliary ganglion and the pterygopalatine ganglion (PPG_CGX; n = 38), while sympathetic lesioning involved transection of the superior cervical ganglion (SCGX; n = 49). After one week of recovery, chicks were then exposed to temporally modulated light (3 days, 2 Hz, Mean: 680 lux) that was either achromatic (with blue [RGB], or without blue [RG]), or chromatic (with blue [B/Y] or without blue [R/G]). Control birds with lesions, or unlesioned, were exposed to white [RGB] or yellow [RG] light. Ocular biometry and refraction (Lenstar and a Hartinger refractometer) was measured before and after exposure to light stimulation. Measurements were statistically analyzed for the effects of a lack of autonomic input and the type of temporal stimulation. In PPG_CGX lesioned eyes, there was no effect of the lesions one-week post-surgery. However, after exposure to achromatic modulation, the lens thickened (with blue) and the choroid thickened (without blue) but there was no effect on axial growth. Chromatic modulation thinned the choroid with R/G. In the SGX lesioned eye, there was no effect of the lesion 1-week post-surgery. However, after exposure to achromatic modulation (without blue), the lens thickened and there was a reduction in vitreous chamber depth and axial length. Chromatic modulation caused a small increase in vitreous chamber depth with R/G. Both autonomic lesion and visual stimulation were necessary to affect the growth of ocular components. The bidirectional responses observed in axial growth and in choroidal changes suggest that autonomic innervation combined with spectral cues from longitudinal chromatic aberration may provide a mechanism for homeostatic control of emmetropization.

Identifiants

pubmed: 37230289
pii: S0014-4835(23)00129-X
doi: 10.1016/j.exer.2023.109508
pmc: PMC10452042
mid: NIHMS1907399
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

109508

Subventions

Organisme : NEI NIH HHS
ID : R01 EY023281
Pays : United States

Informations de copyright

Copyright © 2023 Elsevier Ltd. All rights reserved.

Références

J Opt Soc Am A. 1992 Sep;9(9):1477-85
pubmed: 1527650
Exp Eye Res. 2021 May;206:108525
pubmed: 33711339
Exp Eye Res. 2017 Feb;155:75-84
pubmed: 27979713
Optom Vis Sci. 2018 Oct;95(10):911-920
pubmed: 30179995
Ophthalmology. 2016 Feb;123(2):391-399
pubmed: 26271839
Invest Ophthalmol Vis Sci. 2018 Dec 3;59(15):6003-6013
pubmed: 30572345
Nature. 2007 Jun 14;447(7146):851-4
pubmed: 17568745
J Exp Biol. 1999 Nov;202(Pt 21):2951-9
pubmed: 10518476
Vision Res. 1996 Mar;36(6):775-86
pubmed: 8736214
Annu Rev Vis Sci. 2015 Nov;1:499-518
pubmed: 27795997
Z Zellforsch Mikrosk Anat. 1967;82(4):577-88
pubmed: 5628918
Curr Eye Res. 2003 Dec;27(6):371-85
pubmed: 14704921
Vision Res. 2017 Nov;140:55-65
pubmed: 28801261
Proc Biol Sci. 2007 Aug 22;274(1621):1941-8
pubmed: 17550879
J Physiol. 2011 Jan 1;589(Pt 1):41-7
pubmed: 20724364
Exp Eye Res. 2022 Apr;217:108963
pubmed: 35093392
Vision Res. 2010 Jan;50(1):57-64
pubmed: 19819252
Neuron. 2004 Aug 19;43(4):447-68
pubmed: 15312645
Brain Res. 1997 Sep 19;769(1):168-72
pubmed: 9374286
Curr Eye Res. 1996 May;15(5):453-60
pubmed: 8670746
Folia Morphol (Warsz). 1984;43(3):191-5
pubmed: 6335468
Exp Eye Res. 2022 Apr;217:108964
pubmed: 35120871
J Physiol Anthropol. 2016 Oct 5;35(1):24
pubmed: 27716445
Invest Ophthalmol Vis Sci. 2003 Sep;44(9):3705-12
pubmed: 12939283
Anat Anz. 1973;133(1):82-9
pubmed: 4716411
Optom Vis Sci. 2023 Jan 1;100(1):33-42
pubmed: 36473083
Z Zellforsch Mikrosk Anat. 1967;83(2):147-68
pubmed: 5598006
Vision Res. 2002 Jan;42(1):99-106
pubmed: 11804635
Ophthalmic Physiol Opt. 2013 May;33(3):196-214
pubmed: 23662955
J Vis. 2012 Jun 19;12(6):
pubmed: 22715194
J Ocul Pharmacol Ther. 2011 Oct;27(5):461-6
pubmed: 21815829
Cell Tissue Res. 1982;222(2):417-31
pubmed: 7083310
Invest Ophthalmol Vis Sci. 1997 May;38(6):1241-60
pubmed: 9152244
Invest Ophthalmol Vis Sci. 2006 Aug;47(8):3225-33
pubmed: 16877385
Ann Ophthalmol. 1971 Aug;3(8):891-7
pubmed: 5163783
Exp Eye Res. 2007 Feb;84(2):266-74
pubmed: 17101130
Exp Eye Res. 2012 Sep;102:93-103
pubmed: 22828050
Vision Res. 2004 Mar;44(7):643-53
pubmed: 14751549
Science. 2002 Feb 8;295(5557):1065-70
pubmed: 11834834
Exp Eye Res. 2000 Apr;70(4):519-27
pubmed: 10866000
J Opt Soc Am. 1977 Aug;67(8):1081-91
pubmed: 894381
Ophthalmic Res. 1998;30(6):361-7
pubmed: 9731117
Vision Res. 2018 Oct;151:78-87
pubmed: 28734871
Binocul Vis Strabismus Q. 2000;15(3 Suppl):281-304
pubmed: 11486796
Vision Res. 2008 Sep;48(19):1980-91
pubmed: 18585403
Vis Neurosci. 1990 Feb;4(2):177-83
pubmed: 2271446
Vision Res. 1993 Aug;33(12):1593-603
pubmed: 8236848
Science. 1987 Jul 3;237(4810):73-7
pubmed: 3603011
Exp Eye Res. 2021 Jan;202:108331
pubmed: 33152390
Ophthalmic Physiol Opt. 2013 May;33(3):245-56
pubmed: 23662958
Am J Ophthalmol. 2014 Feb;157(2):451-457.e1
pubmed: 24315293
Eur J Neurosci. 1997 Jul;9(7):1536-41
pubmed: 9240412
J Comp Neurol. 1997 Sep 29;386(3):422-42
pubmed: 9303427
Auton Neurosci. 2011 Nov 16;165(1):67-79
pubmed: 21071284
Vision Res. 2009 Jul;49(14):1775-83
pubmed: 19383509
Vis Neurosci. 2014 Mar;31(2):177-87
pubmed: 24555883
N Engl J Med. 1985 Jun 20;312(25):1609-15
pubmed: 4000200
Curr Eye Res. 1987 Aug;6(8):993-9
pubmed: 3665562
Exp Eye Res. 1999 May;68(5):573-81
pubmed: 10328971
Am J Optom Arch Am Acad Optom. 1965 Aug;42:439-49
pubmed: 14330575
Invest Ophthalmol Vis Sci. 2006 May;47(5):1768-77
pubmed: 16638980
J Ocul Pharmacol Ther. 1999 Feb;15(1):85-90
pubmed: 10048351
J Neurosci. 1987 Dec;7(12):3827-39
pubmed: 3694256
Ophthalmologica. 1996;210(5):296-302
pubmed: 8878213
Trends Neurosci. 2015 Apr;38(4):195-206
pubmed: 25698649
Physiol Behav. 1993 Sep;54(3):555-61
pubmed: 8415950
J Auton Nerv Syst. 1992 Sep;40(2):155-60
pubmed: 1464695
J Opt Soc Am A Opt Image Sci Vis. 1995 Mar;12(3):456-64
pubmed: 7891214
J Opt Soc Am A. 1990 Dec;7(12):2223-36
pubmed: 2090801
Vis Neurosci. 2000 Mar-Apr;17(2):165-76
pubmed: 10824671
J Exp Zool. 1984 Feb;229(2):265-71
pubmed: 6736886
Vision Res. 1995 May;35(9):1175-94
pubmed: 7610579
Vision Res. 2007 Mar;47(7):946-54
pubmed: 17320141
Vision Res. 1997 Mar;37(6):659-68
pubmed: 9156210
Invest Ophthalmol Vis Sci. 2015 Sep;56(10):6121-31
pubmed: 26393671
FEBS Lett. 2007 Nov 13;581(27):5327-31
pubmed: 17977531
Histochem Cell Biol. 2010 Aug;134(2):145-57
pubmed: 20607273
Exp Eye Res. 2021 Jun;207:108602
pubmed: 33930397
J Ocul Pharmacol Ther. 2006 Feb;22(1):41-6
pubmed: 16503774
Vision Res. 1996 Apr;36(7):1023-36
pubmed: 8736261
Vision Res. 2020 Jan;166:12-19
pubmed: 31786198
Exp Eye Res. 2006 Mar;82(3):357-61
pubmed: 16289045
Vis Neurosci. 2018 Jan;35:E004
pubmed: 29905117
Ophthalmology. 2012 Feb;119(2):347-54
pubmed: 21963266
Jpn J Ophthalmol. 2007 Jan-Feb;51(1):27-33
pubmed: 17295137
Exp Eye Res. 2001 Sep;73(3):345-53
pubmed: 11520109
Proc Soc Exp Biol Med. 1972 May;140(1):351-6
pubmed: 5033112
Clin Exp Optom. 2015 Nov;98(6):507-17
pubmed: 26769177
Curr Biol. 1999 Feb 25;9(4):199-202
pubmed: 10074430
Invest Ophthalmol Vis Sci. 2021 Jan 4;62(1):21
pubmed: 33475690
J Ocul Pharmacol Ther. 1997 Feb;13(1):61-7
pubmed: 9029440
Vision Res. 2003 Jul;43(16):1723-34
pubmed: 12818343
Sci Rep. 2016 Dec 5;6(1):9
pubmed: 28442706
J Cereb Blood Flow Metab. 1988 Oct;8(5):697-712
pubmed: 3417797
Invest Ophthalmol Vis Sci. 1998 Sep;39(10):1765-74
pubmed: 9727398
J Vis. 2018 Jul 2;18(7):10
pubmed: 30029274
Physiol Rev. 2013 Jan;93(1):107-35
pubmed: 23303907
Invest Ophthalmol Vis Sci. 2021 Apr 28;62(5):7
pubmed: 33909031
J Neurosci. 2003 Oct 29;23(30):9881-7
pubmed: 14586017
Exp Eye Res. 2020 Sep;198:108126
pubmed: 32717338
Nat Neurosci. 1999 Aug;2(8):706-12
pubmed: 10412059
Curr Eye Res. 2003 Jul;27(1):1-6
pubmed: 12868003

Auteurs

Frances Rucker (F)

New England College of Optometry, 424 Beacon St., Boston, MA, 02115, USA. Electronic address: ruckerf@neco.edu.

Chris Taylor (C)

New England College of Optometry, 424 Beacon St., Boston, MA, 02115, USA.

Alexandra Kaser-Eichberger (A)

Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg Paracelsus Medical University, Salzburg, Austria.

Falk Schroedl (F)

Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg Paracelsus Medical University, Salzburg, Austria.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH