Therapeutic targeting of P2X4 receptor and mitochondrial metabolism in clear cell renal carcinoma models.
Drug screening
Lysosomes
Mitochondria
Organoids
Purinergic receptors
Renal carcinoma
Journal
Journal of experimental & clinical cancer research : CR
ISSN: 1756-9966
Titre abrégé: J Exp Clin Cancer Res
Pays: England
ID NLM: 8308647
Informations de publication
Date de publication:
26 May 2023
26 May 2023
Historique:
received:
17
03
2023
accepted:
17
05
2023
medline:
29
5
2023
pubmed:
26
5
2023
entrez:
25
5
2023
Statut:
epublish
Résumé
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Large-scale metabolomic data have associated metabolic alterations with the pathogenesis and progression of renal carcinoma and have correlated mitochondrial activity with poor survival in a subset of patients. The aim of this study was to determine whether targeting mitochondria-lysosome interaction could be a novel therapeutic approach using patient-derived organoids as avatar for drug response. RNAseq data analysis and immunohistochemistry were used to show overexpression of Purinergic receptor 4 (P2XR4) in clear cell carcinomas. Seahorse experiments, immunofluorescence and fluorescence cell sorting were used to demonstrate that P2XR4 regulates mitochondrial activity and the balance of radical oxygen species. Pharmacological inhibitors and genetic silencing promoted lysosomal damage, calcium overload in mitochondria and cell death via both necrosis and apoptosis. Finally, we established patient-derived organoids and murine xenograft models to investigate the antitumor effect of P2XR4 inhibition using imaging drug screening, viability assay and immunohistochemistry. Our data suggest that oxo-phosphorylation is the main source of tumor-derived ATP in a subset of ccRCC cells expressing P2XR4, which exerts a critical impact on tumor energy metabolism and mitochondrial activity. Prolonged mitochondrial failure induced by pharmacological inhibition or P2XR4 silencing was associated with increased oxygen radical species, changes in mitochondrial permeability (i.e., opening of the transition pore complex, dissipation of membrane potential, and calcium overload). Interestingly, higher mitochondrial activity in patient derived organoids was associated with greater sensitivity to P2XR4 inhibition and tumor reduction in a xenograft model. Overall, our results suggest that the perturbed balance between lysosomal integrity and mitochondrial activity induced by P2XR4 inhibition may represent a new therapeutic strategy for a subset of patients with renal carcinoma and that individualized organoids may be help to predict drug efficacy.
Sections du résumé
BACKGROUND
BACKGROUND
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Large-scale metabolomic data have associated metabolic alterations with the pathogenesis and progression of renal carcinoma and have correlated mitochondrial activity with poor survival in a subset of patients. The aim of this study was to determine whether targeting mitochondria-lysosome interaction could be a novel therapeutic approach using patient-derived organoids as avatar for drug response.
METHODS
METHODS
RNAseq data analysis and immunohistochemistry were used to show overexpression of Purinergic receptor 4 (P2XR4) in clear cell carcinomas. Seahorse experiments, immunofluorescence and fluorescence cell sorting were used to demonstrate that P2XR4 regulates mitochondrial activity and the balance of radical oxygen species. Pharmacological inhibitors and genetic silencing promoted lysosomal damage, calcium overload in mitochondria and cell death via both necrosis and apoptosis. Finally, we established patient-derived organoids and murine xenograft models to investigate the antitumor effect of P2XR4 inhibition using imaging drug screening, viability assay and immunohistochemistry.
RESULTS
RESULTS
Our data suggest that oxo-phosphorylation is the main source of tumor-derived ATP in a subset of ccRCC cells expressing P2XR4, which exerts a critical impact on tumor energy metabolism and mitochondrial activity. Prolonged mitochondrial failure induced by pharmacological inhibition or P2XR4 silencing was associated with increased oxygen radical species, changes in mitochondrial permeability (i.e., opening of the transition pore complex, dissipation of membrane potential, and calcium overload). Interestingly, higher mitochondrial activity in patient derived organoids was associated with greater sensitivity to P2XR4 inhibition and tumor reduction in a xenograft model.
CONCLUSION
CONCLUSIONS
Overall, our results suggest that the perturbed balance between lysosomal integrity and mitochondrial activity induced by P2XR4 inhibition may represent a new therapeutic strategy for a subset of patients with renal carcinoma and that individualized organoids may be help to predict drug efficacy.
Identifiants
pubmed: 37231503
doi: 10.1186/s13046-023-02713-1
pii: 10.1186/s13046-023-02713-1
pmc: PMC10214673
doi:
Substances chimiques
Receptors, Purinergic P2X4
0
Calcium
SY7Q814VUP
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
134Informations de copyright
© 2023. The Author(s).
Références
Choueiri TK, Albiges L, Atkins MB, Bakouny Z, Bratslavsky G, Braun DA, et al. From basic science to clinical translation in kidney cancer: a report from the second kidney cancer research summit. Clin Cancer Res. 2022;28:831–9.
pubmed: 34965942
pmcid: 9223120
doi: 10.1158/1078-0432.CCR-21-3238
Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med. 2017;376:354–66.
pubmed: 28121507
doi: 10.1056/NEJMra1601333
Weiss RH. Metabolomics and metabolic reprogramming in kidney cancer. Semin Nephrol. 2018;38:175–82.
pubmed: 29602399
pmcid: 6009840
doi: 10.1016/j.semnephrol.2018.01.006
Wettersten HI, Hakimi AA, Morin D, Bianchi C, Johnstone ME, Donohoe DR, et al. Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res. 2015;75:2541–52.
pubmed: 25952651
pmcid: 4470795
doi: 10.1158/0008-5472.CAN-14-1703
Choueiri TK, Powles T, Burotto M, Escudier B, Bourlon MT, Zurawski B, et al. CheckMate ER Investigators nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2021;384:829–41.
pubmed: 33657295
pmcid: 8436591
doi: 10.1056/NEJMoa2026982
Choueiri TK, Kaelin WG Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med. 2020;26:1519–30.
pubmed: 33020645
doi: 10.1038/s41591-020-1093-z
Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK. CheckMate 214 Investigators nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378:1277–90.
pubmed: 29562145
pmcid: 5972549
doi: 10.1056/NEJMoa1712126
Adelaiye-Ogala R, Damayanti NP, Orillion AR, Arisa S, Chintala S, Titus MA, et al. Therapeutic Targeting of sunitinib-induced AR phosphorylation in renal cell carcinoma. Cancer Res. 2018;78:2886–96.
pubmed: 29572225
pmcid: 7001156
doi: 10.1158/0008-5472.CAN-17-3386
He YH, Tian G. Autophagy as a vital therapy target for renal cell carcinoma. Front Pharmacol. 2021;11:518225.
pubmed: 33643028
pmcid: 7902926
doi: 10.3389/fphar.2020.518225
Marquardt A, Solimando AG, Kerscher A, Bittrich M, Kalogirou C, Kübler H, et al. Subgroup-Independent mapping of renal cell carcinoma-machine learning reveals prognostic mitochondrial gene signature beyond histopathologic boundaries. Front Oncol. 2021;11:621278.
pubmed: 33791209
pmcid: 8005734
doi: 10.3389/fonc.2021.621278
Hakimi AA, Reznik E, Lee C-H, Creighton CJ, Brannon AR, Luna A, et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell. 2016;1:104–16.
doi: 10.1016/j.ccell.2015.12.004
Gatto F, Nookaew I, Nielsen J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci USA. 2014;111:E866–75.
pubmed: 24550497
pmcid: 3948310
doi: 10.1073/pnas.1319196111
Passaniti A, Kim MS, Polster BM, Shapiro P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol Carcinog. 2022;61:827–38.
pubmed: 35723497
doi: 10.1002/mc.23436
Mukherjee S, Bhatti GK, Chhabra R, Reddy PH, Bhatti JS. Targeting mitochondria as a potential therapeutic strategy against chemoresistance in cancer. Biomed Pharmacother. 2023;160:114398.
pubmed: 36773523
doi: 10.1016/j.biopha.2023.114398
Jain A, Zoncu R. Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol Metab. 2022;60:101481.
pubmed: 35342037
pmcid: 9043965
doi: 10.1016/j.molmet.2022.101481
Barbonari S, D’Amore A, Palombi F, De Cesaris P, Parrington J, Riccioli A, et al. Relevance of lysosomal Ca2+ signalling machinery in cancer. Cell Calcium. 2022;102:102539.
pubmed: 35074687
doi: 10.1016/j.ceca.2022.102539
Luzio JP, Paul R, Pryor NA. Bright lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8:622–32.
pubmed: 17637737
doi: 10.1038/nrm2217
Di Virgilio F, Vultaggio-Poma V, Sarti AC. P2X receptors in cancer growth and progression. Biochem Pharmacol. 2021;187:114350.
pubmed: 33253643
doi: 10.1016/j.bcp.2020.114350
Palinski W, Monti M, Camerlingo R, Iacobucci I, Bocella S, Pinto F, et al. Lysosome purinergic receptor P2X4 regulates neoangiogenesis induced by microvesicles from sarcoma patients. Cell Death Dis. 2021;12:797.
pubmed: 34404763
pmcid: 8371002
doi: 10.1038/s41419-021-04069-w
de Nigris F, Rossiello R, Schiano C, Arra C, Williams-Ignarro S, Barbieri A, Lanza A, Balestrieri A, Giuliano MT, Ignarro LJ, Napoli C, et al. Deletion of Yin Yang 1 protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis. Cancer Res. 2008;68:1797–808.
pubmed: 18339860
doi: 10.1158/0008-5472.CAN-07-5582
Scognamiglio G, De Chiara A, Parafioriti A, Armiraglio E, Fazioli F, Gallo M, et al. Patient-derived organoids as a potential model to predict response to PD-1/PD-L1 checkpoint inhibitors. Br J Cancer. 2019;121:979–82.
pubmed: 31666667
pmcid: 6889147
doi: 10.1038/s41416-019-0616-1
Ludikhuize MC, Meerlo M, Burgering BMT, Rodríguez Colman MJ. Protocol to profile the bioenergetics of organoids using Seahorse. STAR Protoc. 2021;2:100386.
pubmed: 33778780
pmcid: 7982773
doi: 10.1016/j.xpro.2021.100386
Koncha RR, Ramachandran G, Sepuri NB, Ramaiah K. CCCP-induced mitochondrial dysfunction - characterization and analysis of integrated stress response to cellular signaling and homeostasis. FEBS J. 2021;288:5737–54.
pubmed: 33837631
doi: 10.1111/febs.15868
Granatiero V, De Stefani D, Rizzuto R. Mitochondrial calcium handling in physiology and disease. Adv Exp Med Biol. 2017;982:25–47.
pubmed: 28551780
doi: 10.1007/978-3-319-55330-6_2
Boutry M, Kim PK. ORP1L mediated PI(4)P signaling at ER-lysosome-mitochondrion three-way contact contributes to mitochondrial division. Nat Commun. 2021;12:5354.
pubmed: 34504082
pmcid: 8429648
doi: 10.1038/s41467-021-25621-4
Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25:119–46.
pubmed: 26906267
pmcid: 4948213
doi: 10.1089/ars.2016.6665
Rhee SG, Yang K-S, Kang SW, Woo HA, Chang T-S. Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal. 2005;7:619–26.
pubmed: 15890005
doi: 10.1089/ars.2005.7.619
Sun H, Wei X, Zeng C. Autophagy in Xp11 translocation renal cell carcinoma: from bench to bedside. Mol Cell Biochem. 2021;476:4231–44.
pubmed: 34345999
doi: 10.1007/s11010-021-04235-w
Papadopoulos C, Kravic B, Meyer H. Repair or lysophagy: Dealing with damaged lysosomes. J Mol Biol. 2020;432:231–9.
pubmed: 31449799
doi: 10.1016/j.jmb.2019.08.010
Anding AL, Baehrecke EH. Cleaning house: selective autophagy of organelles. Dev Cell. 2017;41:10–22.
pubmed: 28399394
pmcid: 5395098
doi: 10.1016/j.devcel.2017.02.016
Colella G, Fazioli F, Gallo M, De Chiara A, Apice G, Ruosi C, et al. Sarcoma spheroids and organoids - Promising tools in the era of personalized medicine. Int J Mol Sci. 2018;19:615.
pubmed: 29466296
pmcid: 5855837
doi: 10.3390/ijms19020615
Li Z, Xu H, Yu L, Wang J, Meng Q, Mei H, Cai Z, Chen W, Huang W. Patient-derived renal cell carcinoma organoids for personalized cancer therapy. Clin Transl Med. 2022;12: e970.
pubmed: 35802820
pmcid: 9270001
doi: 10.1002/ctm2.970
Murrell-Lagnado Ruth D, Frick M. P2X4 and lysosome fusion. Curr Opin Pharmacol 2019;47:126–132.
Machado ER, Annunziata I, van de Vlekkert D, Grosveld GC, d’Azzo A. Lysosomes and Cancer Progression: A Malignant Liaison. Front Cell Dev Biol. 2021;26(9):642494.
doi: 10.3389/fcell.2021.642494
Cao Q, Zhong XZ, Zou Y, Murrell-Lagnado R, Zhu MX, Dong XP. Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol. 2015;209:879–94.
pubmed: 26101220
pmcid: 4477861
doi: 10.1083/jcb.201409071
Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Front Pharmacol. 2017;8:291.
pubmed: 28588493
pmcid: 5441391
doi: 10.3389/fphar.2017.00291
Ulmann L, Hirbec H, Rassendren F. P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J. 2010;29:2290–300.
pubmed: 20562826
pmcid: 2910276
doi: 10.1038/emboj.2010.126
Layhadi JA, Turner J, Crossman D, Fountain SJ. ATP evokes Ca
pubmed: 29255078
doi: 10.4049/jimmunol.1700965
Ledderose C, Liu K, Kondo Y, Lebowski CJ, Dertnig T, Denicolo S, et al. Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration. J Clin Invest. 2018;128:3583–94.
pubmed: 29894310
pmcid: 6063471
doi: 10.1172/JCI120972
Roliano GG, Azambuja JH, Brunetto VT, Butterfield HE, Kalil AN, Braganhol E. Colorectal cancer and purinergic signalling: an overview. Cancers (Basel). 2022;14:4887.
pubmed: 36230810
doi: 10.3390/cancers14194887
He J, Zhou Y, Arredondo Carrera HM, Sprules A, Neagu R, Zarkesh SA, et al. Inhibiting the P2X4 receptor suppresses prostate cancer growth in vitro and in vivo, suggesting a potential clinical target. Cells. 2020;9:2511.
pubmed: 33233569
pmcid: 7699771
doi: 10.3390/cells9112511
Torres Á, Erices JI, Sanchez F, Ehrenfeld P, Turchi L, Virolle T, et al. Extracellular adenosine promotes cell migration/invasion of glioblastoma stem-like cells through A3 adenosine receptor activation under hypoxia. Cancer Lett. 2019;446:112–22.
pubmed: 30660649
doi: 10.1016/j.canlet.2019.01.004
Chadet S, Allard J, Brisson L, Lopez-Charcas O, Lemoine R, Heraud A, et al. P2x4 receptor promotes mammary cancer progression by sustaining autophagy and associated mesenchymal transition. Oncogene. 2022;41:2920–31.
pubmed: 35411034
doi: 10.1038/s41388-022-02297-8
Carotti V, Rigalli JP, van Asbeck-van der Wijst J, Hoenderop JGJ. Interplay between purinergic signalling and extracellular vesicles in health and disease. Biochem Pharmacol. 2022;203:115192.
pubmed: 35905971
doi: 10.1016/j.bcp.2022.115192
Aria H, Rezaei M, Nazem S, Daraei A, Nikfar G, Mansoori B, et al. Purinergic receptors are a key bottleneck in tumor metabolic reprogramming: the prime suspect in cancer therapeutic resistance. Front Immunol. 2022;13:947885.
pubmed: 36072596
pmcid: 9444135
doi: 10.3389/fimmu.2022.947885
Schmitt M, Ceteci F, Gupta J, Pesic M, Böttger TW, Nicolas AM, Kennel KB, Engel E, Schewe M, Callak Kirisözü A, Petrocelli V, Dabiri Y, Varga J, Ramakrishnan M, Karimova M, Ablasser A, Sato T, Arkan MC, de Sauvage FJ, Greten FR. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation. Nature. 2022;612:347–53.
pubmed: 36385525
pmcid: 7613947
doi: 10.1038/s41586-022-05426-1
Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8:361–75.
pubmed: 18432251
doi: 10.1038/nrc2374
Wong CY, Kim S, Peng W, Krainc D. Regulation and function of mitochondria-lysosome membrane contact sites in cellular homeostasis. Trends Cell Biol. 2019;29:500–13.
pubmed: 30898429
pmcid: 8475646
doi: 10.1016/j.tcb.2019.02.004
Makhov P, Shreyas J, Pooja G, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies 2018;17:1355-1364.
Wang Z, Tao L, Xue Y, Xue L, Wang Z, Chong T. Association of ATG7 polymorphisms and clear cell renal cell carcinoma risk. Curr Mol Med. 2019;19:40–7.
pubmed: 30827239
doi: 10.2174/1566524019666190227202003
González-Rodríguez P, Engskog-Vlachos P, Zhang H, Murgoci AN, Zerdes I, Joseph B. SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12. Cell Death Dis. 2020;11:69.
pubmed: 31988284
pmcid: 6985262
doi: 10.1038/s41419-020-2266-x