Modern automated microextraction procedures for bioanalytical, environmental, and food analyses.


Journal

Journal of separation science
ISSN: 1615-9314
Titre abrégé: J Sep Sci
Pays: Germany
ID NLM: 101088554

Informations de publication

Date de publication:
Aug 2023
Historique:
revised: 02 05 2023
received: 31 03 2023
accepted: 04 05 2023
medline: 8 8 2023
pubmed: 26 5 2023
entrez: 26 5 2023
Statut: ppublish

Résumé

Sample preparation frequently is considered the most critical stage of the analytical workflow. It affects the analytical throughput and costs; moreover, it is the primary source of error and possible sample contamination. To increase efficiency, productivity, and reliability, while minimizing costs and environmental impacts, miniaturization and automation of sample preparation are necessary. Nowadays, several types of liquid-phase and solid-phase microextractions are available, as well as different automatization strategies. Thus, this review summarizes recent developments in automated microextractions coupled with liquid chromatography, from 2016 to 2022. Therefore, outstanding technologies and their main outcomes, as well as miniaturization and automation of sample preparation, are critically analyzed. Focus is given to main microextraction automation strategies, such as flow techniques, robotic systems, and column-switching approaches, reviewing their applications to the determination of small organic molecules in biological, environmental, and food/beverage samples.

Identifiants

pubmed: 37232209
doi: 10.1002/jssc.202300215
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2300215

Subventions

Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2019/22724-7
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2017/02147-0
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2015/15462-5
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2014/07347-9
Organisme : Institutos Nacionais de Ciência e Tecnologia
ID : 406760/2022-5
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 307293/2014-9
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 142398/2018-7
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 308843/2019-3
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 314731/2021-0
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

Soares da Silva Burato J, Vargas Medina DA, de Toffoli AL, Vasconcelos Soares Maciel E, Mauro Lanças F. Recent advances and trends in miniaturized sample preparation techniques. J Sep Sci. 2020;43:202-25.
Majors RE. Overview of sample preparation. LC GC Eur. 2015;33:46-51.
Ali I, Suhail M, Alharbi OML, Hussain I. Advances in sample preparation in chromatography for organic environmental pollutants analyses. J Liq Chromatogr Relat Technol. 2019;42:137-60.
Hagen DF, Markell CG, Schmitt GA, Blevins DD. Membrane approach to solid-phase extractions. Anal Chim Acta. 1990;236:157-64.
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, et al. Solid-phase microextraction: an appealing alternative for the determination of endogenous substances - a review. Anal Chim Acta. 2019;1077:67-86.
Moein MM, Said R, Bassyouni F, Abdel-Rehim M. Solid phase microextraction and related techniques for drugs in biological samples. J Anal Methods Chem. 2014;2014:1-24.
Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J. Miniaturized solid-phase extraction techniques. TrAC Trends Anal Chem. 2015;73:19-38.
Płotka-Wasylka J, Owczarek K, Namieśnik J. Modern solutions in the field of microextraction using liquid as a medium of extraction. TrAC Trends Anal Chem. 2016;85:46-64. https://doi.org/10.1016/j.trac.2016.08.010
Sajid M, Nazal MK, Rutkowska M, Namieśnik J, Płotka-Wasylka J. Critical reviews in analytical chemistry solid phase microextraction: apparatus, sorbent materials, and application solid phase microextraction:  apparatus, sorbent materials, and application. Crit Rev Anal Chem. 2019;49:271-88.
Naccarato T. Recent applications and newly developed strategies of solid-phase microextraction in contaminant analysis: through the environment to humans. Separations 2019;6:54.
Lashgari M, Singh V, Pawliszyn J. A critical review on regulatory sample preparation methods: validating solid-phase microextraction techniques. TrAC Trends Anal Chem. 2019;119:115618.
Gómez-Ríos GA, Pawliszyn J. Development of coated blade spray ionization mass spectrometry for the quantitation of target analytes present in complex matrices. Angew Chemie Int Ed. 2014;53:14503-7.
Cárdenas-Soracá DM, Singh V, Nazdrajić E, Vasiljević T, Grandy JJ, Pawliszyn J. Development of thin-film solid-phase microextraction coating and method for determination of artificial sweeteners in surface waters. Talanta. 2020;211:120714.
Xu J, He S, Jiang R, Zhu F, Ruan J, Liu H, et al. Disposable solid-phase microextraction fiber coupled with gas chromatography-mass spectrometry for complex matrix analysis. Anal Methods. 2014;6:4895-900.
Jiang R, Pawliszyn J. Thin-film microextraction offers another geometry for solid-phase microextraction. Trends Anal Chem. 2012;39:245-53.
Baltussen E, Sandra P, David F, Cramers C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J Microcolumn Sep. 1999;11:737-47.
Feng Z, Huang C, Guo Y, Tong P, Zhang L. Chemical bonding of oxygenated carbon nitride nanosheets onto stainless steel fiber for solid-phase microextraction of phthalic acid esters. Anal Chim Acta. 2019;1084:43-52.
Figuerola A, Medina DAV, Santos-Neto AJ, Cabello CP, Cerdà V, Palomino GT, et al. Metal-organic framework mixed-matrix coatings on 3D printed devices. Appl Mater Today. 2019;16:21-7.
Moein MM, Javanbakht M, Karimi M, Akbari-Adergani B. Molecularly imprinted sol-gel nanofibers based solid phase microextraction coupled on-line with high performance liquid chromatography for selective determination of acesulfame. Talanta. 2015;134:340-7.
Roychowdhury T, Patel DI, Shah D, Diwan A, Kaykhaii M, Herrington JS, et al. Sputtered silicon solid phase microextraction fibers with a polydimethylsiloxane stationary phase with negligible carry-over and phase bleed. J Chromatogr A. 2020;1623:461065.
Liu H, Ji L, Li J, Liu S, Liu X, Jiang S. Magnetron sputtering Si interlayer: a protocol to prepare solid phase microextraction coatings on metal-based fiber. J Chromatogr A. 2011;1218:2835-40.
Truong TV, Truong TX, Porter NL, Lee ED, Lee ML. Analysis of organic compounds in water using unique concentration-injection techniques for portable GC-MS. Spec Issues. 2017; 20:6-14.
Medina DAV, Figuerola A, Rodriguez F, Santos-Neto ÁJ, Cabello CP, Palomino GT, et al. Hyperporous carbon-coated 3D printed devices. Appl Mater Today. 2019;14:29-34.
Manzo V, Goya-Pacheco J, Arismendi D, Becerra-Herrera M, Castillo-Aguirre A, Castillo-Felices R, et al. Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE). Anal Chim Acta. 2019;1087:1-10.
Majors RE. New designs and formats in solid-phase extraction sample preparation. LC GC North Am. 2001;19:678-87.
Jeannot MA, Cantwell FF. Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle. Anal Chem. 1997;69:235-9.
Jeannot MA, Cantwell FF. Solvent microextraction into a single drop. Anal Chem. 1996;68:2236-40.
Carasek E, Merib J, Mafra G, Spudeit D. A recent overview of the application of liquid-phase microextraction to the determination of organic micro-pollutants. TrAC - Trends Anal Chem. 2018;108:203-9.
Seidi S, Rezazadeh M Y Y. Pharmaceutical applications of liquid-phase microextraction. TrAC Trends Anal Chem. 2019;112:241-7.
Yamini Y, Rezazadeh M, Seidi S. Liquid-phase microextraction - the different principles and configurations. TrAC Trends Anal Chem. 2019;112:264-72.
Pedersen-Bjergaard S, Rasmussen KE. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal Chem. 1999;71:2650-6.
Venson R, Korb AS, Cooper G. A review of the application of hollow-fiber liquid-phase microextraction in bioanalytical methods - A systematic approach with focus on forensic toxicology. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1108:32-53.
Esrafili A, Baharfar M, Tajik M, Yamini Y, Ghambarian M. Two-phase hollow fiber liquid-phase microextraction. TrAC Trends Anal Chem. 2018;108:314-22.
Gjelstad A. Three-phase hollow fiber liquid-phase microextraction and parallel artificial liquid membrane extraction. TrAC Trends Anal Chem. 2019;113:25-31.
Pedrón I, Chisvert A, March JG, Salvador A, Benedé JL. Development of a new three-phase membrane-assisted liquid-phase microextraction method: Determination of nitrite in tap water samples as model analytical application. Anal Bioanal Chem. 2011;400:595-601.
Reza M, Zanjani K, Yamini Y, Shariati S, Jönsson JA. A new liquid-phase microextraction method based on solidification of floating organic drop. Anal Chim Acta. 2007;585:286-93.
Campillo N, Viñas P, Šandrejová J, Andruch V. Ten years of dispersive liquid-liquid microextraction and derived techniques. Appl Spectrosc Rev. 2017;52:267-415.
Yeong Hwang T, Mee Kin C, Ling Shing W. A review on extraction solvents in the dispersive liquid-liquid microextraction. Malaysian J Anal Sci. 2018;22:166-74.
Medina DAV, Santos-Neto ÁJ, Cerdà V, Maya F. Automated dispersive liquid-liquid microextraction based on the solidification of the organic phase. Talanta. 2018;189:241-8.
Valsecchi S, Polesello S, Mazzoni M, Rusconi M, Petrovic M. On-line sample extraction and purification for the LC-MS determination of emerging contaminants in environmental samples. Trends Environ Anal Chem. 2015;8:27-37.
Kataoka H., Sample preparation for liquid chromatography. Handbooks in Separation Science: Liquid Chromatography. 2nd ed. Vol. 2. Amsterdam: Elsevier; 2017. pp. 1-37.
Cerdà V, Ferrer L, Avivar J, Cerdà A. Flow analysis: a practical guide. Boston: Elsevier; 2014. pp. 1-42.
Alexovič M, Horstkotte B, Solich P, Sabo J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports. Anal Chim Acta. 2016;907:18-30.
Alexovič M, Horstkotte B, Solich P, Sabo J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation. Anal Chim Acta. 2016;906:22-40. https://doi.org/10.1016/j.aca.2015.11.038
Alexovič M, Horstkotte B, Šrámková I, Solich P, Sabo J. Automation of dispersive liquid-liquid microextraction and related techniques. TrAC Trends Anal Chem. 2017;86:39-55.
Calderilla C, Maya F, Leal LO, Cerdà V. Recent advances in flow-based automated solid-phase extraction. TrAC Trends Anal Chem. 2018;108:370-80.
Dessy R. Robots in the Laboratory: Part 1. Anal Chem. 1983;55:1232A-64A.
Dryden MDM, Fobel R, Fobel C, Wheeler AR. Upon the shoulders of giants: open-source hardware and software in analytical chemistry. Anal Chem. 2017;89:4330-8.
Prabhu GRD, Urban PL. The dawn of unmanned analytical laboratories. TrAC - Trends Anal Chem. 2017;88:41-52.
Prabhu GRD, Yang TH, Hsu CY, Shih CP, Chang CM, Liao PH, et al. Facilitating chemical and biochemical experiments with electronic microcontrollers and single-board computers. Nat Protoc. 2020;15:925-90. https://doi.org/10.1038/s41596-019-0272-1
Urban PL. Prototyping instruments for the chemical laboratory using inexpensive electronic modules. Angew Chemie Int Ed. 2018;57:11074-7.
Medina DAV, Rodriguez Cabal LF, Lanças FM, Santos-Neto ÁJ. Sample treatment platform for automated integration of microextraction techniques and liquid chromatography analysis. Hardware X. 2019;5:e00056.
Chiu SH, Urban PL. Robotics-assisted mass spectrometry assay platform enabled by open-source electronics. Biosens Bioelectron. 2015;64:260-8.
Chen CL, Chen TR, Chiu SH, Urban PL. Dual robotic arm “production line” mass spectrometry assay guided by multiple Arduino-type microcontrollers. Sensors Actuators, B Chem. 2017;239:608-16.
Sartore DM, Vargas Medina DA, Costa JL, Lanças FM, Santos-Neto ÁJ. Automated microextraction by packed sorbent of cannabinoids from human urine using a lab-made device packed with molecularly imprinted polymer. Talanta. 2020;219:121185.
Bocelli MD, Vargas Medina DA, Rodriguez JPG, Lanças FM, Santos-Neto ÁJ. Determination of parabens in wastewater samples via robot-assisted dynamic single-drop microextraction and liquid chromatography-tandem mass spectrometry. Electrophoresis. 2022;43:1567-76.
Ouyang G, Pawliszyn J. Kinetic calibration for automated hollow fiber-protected liquid-phase microextraction. Anal Chem. 2006;78:5783-8.
Ouyang G, Zhao W, Pawliszyn J. Kinetic calibration for automated headspace liquid-phase microextraction. Anal Chem. 2005;77:8122-8.
Raterink RJ, Witkam Y, Vreeken RJ, Ramautar R, Hankemeier T. Gas pressure assisted microliquid-liquid extraction coupled online to direct infusion mass spectrometry: A new automated screening platform for bioanalysis. Anal Chem. 2014;86:10323-30.
Scott RPW, Kucera P. Use of microbore columns for the separation of substances of biological origin. J Chromatogr A. 1979;185:27-41.
Mao Y, Huang MQ., Online extraction and column switching techniques in LC-MS bioanalisys. Sample Preparation in LC-MS Bioanalysis. Wiley; 2019. pp. 31-44.
Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M. New developments in microextraction techniques in bioanalysis. a review. Anal Chim Acta. 2016;905:8-23.
Gama MR, Bottoli CBG. Molecularly imprinted polymers for bioanalytical sample preparation. J ChromatogrB Anal Technol BiomedLife Sci. 2017;1043:107-21.
Pan J, Zhang C, Zhang Z, Li G. Review of online coupling of sample preparation techniques with liquid chromatography. Anal Chim Acta. 2014;815:1-15.
Nazaripour A, Yamini Y, Ebrahimpour B, Fasihi J. Automated hollow-fiber liquid-phase microextraction followed by liquid chromatography with mass spectrometry for the determination of benzodiazepine drugs in biological samples. J Sep Sci. 2016;39:2595-603.
Nazaripour A, Yamini Y, Bagheri H. Extraction and determination of trace amounts of three anticancer pharmaceuticals in urine by three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents followed by high-performance liquid chromatography. J Sep Sci. 2018;41:3113-20.
Fuchs D, Gabel-Jensen C, Jensen H, Rand KD, Pedersen-Bjergaard S, Hansen SH, et al. Direct coupling of a flow-flow electromembrane extraction probe to LC-MS. Anal Chim Acta. 2016;905:93-9.
Fuchs D, Pedersen-Bjergaard S, Jensen H, Rand KD, Honoré Hansen S, Petersen NJ. Fully automated electro membrane extraction autosampler for LC-MS systems allowing soft extractions for high-throughput applications. Anal Chem. 2016;88:6797-804.
Vakh C, Pochivalov A, Andruch V, Moskvin L, Bulatov A. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: Liquid chromatographic determination of ofloxacin in human urine samples. Anal Chim Acta. 2016;907:54-9.
Cherkashina K, Vakh C, Lebedinets S, Pochivalov A, Moskvin L, Lezov A, et al. An automated salting-out assisted liquid-liquid microextraction approach using 1-octylamine: On-line separation of tetracycline in urine samples followed by HPLC-UV determination. Talanta. 2018;184:122-7.
Lin Y, Chen JH, He R, Tang B, Jiang L, Zhang X. A fully validated high-throughput liquid chromatography tandem mass spectrometry method for automatic extraction and quantitative determination of endogenous nutritional biomarkers in dried blood spot samples. J Chromatogr A. 2020;1622:461092.
Deprez S, Stove CP. Fully automated dried blood spot extraction coupled to liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of immunosuppressants. J Chromatogr A. 2021;1653:462430.
Cabal LFR, Medina DAV, Costa JL, Lanças FM, Santos-Neto ÁJ. Determination of ring-substituted amphetamines through automated online hollow fiber liquid-phase microextraction-liquid chromatography. Anal Bioanal Chem. 2019;411:7889-97.
Alexovič M, Dotsikas Y, Bober P, Sabo J. Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1092:402-21.
Alexovič M, Urban PL, Tabani H, Sabo J. Recent advances in robotic protein sample preparation for clinical analysis and other biomedical applications. Clin Chim Acta. 2020;507:104-16.
Deslandes G, Grégoire M, Renaud C, Monteil-Ganière C, Azoulay C, Pineau A, et al. Comparison Between an Automated and Manual Extraction for the Determination of Immunosuppressive Drugs Whole Blood Concentrations by Liquid Chromatography Tandem Mass Spectrometry. J Clin Lab Anal. 2016;30:924-9.
van der Gugten JG, Bressler B, DeMarco ML. An automated mass spectrometric blood test for therapeutic drug monitoring of infliximab. Clin Mass Spectrom. 2019;12:16-22.
Sun L, Xu Y, Dube N, Anderson M, Breidinger S, Vaddady P, et al. Incorporating protein precipitation to resolve hybrid IP-LC-MS assay interference for ultrasensitive quantification of intact therapeutic insulin dimer in human plasma. J Pharm Biomed Anal. 2022;212:114639.
Li M, Zhang S, Shi A, Qi W, Liu Y. Determination of quetiapine in human plasma by LC-MS/MS and its application in a bioequivalence study. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1060:10-4.
Kristoffersen L, Langødegård M, Gaare KI, Amundsen I, Terland MN, Strand DH. Determination of 12 commonly found compounds in DUID cases in whole blood using fully automated supported liquid extraction and UHPLC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1093-1094:8-23.
Robin T, Barnes A, Dulaurent S, Loftus N, Baumgarten S, Moreau S, et al. Fully automated sample preparation procedure to measure drugs of abuse in plasma by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2018;410:5071-83.
Robin T, Saint-Marcoux F, Toinon D, Tafzi N, Marquet P, El Balkhi S. Automatic quantification of uracil and dihydrouracil in plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2020;1142:122038.
Ueyanagi Y, Setoyama D, Kawakami D, Mushimoto Y, Matsumoto S, Hotta T, et al. Fully automated quantitative measurement of serum organic acids via LC-MS/MS for the diagnosis of organic acidemias: establishment of an automation system and a proof-of-concept validation. Diagnostics. 2021;11:2195.
Magréault S, Jaureguy F, Zahar J-R, Méchaï F, Toinon D, Cohen Y, et al. Automated HPLC-MS/MS assay for the simultaneous determination of ten plasma antibiotic concentrations. J Chromatogr B. 2022;1211:123496.
Lu X, Wang Z, Gao Y, Chen W, Wang L, Huang P, et al. AutoProteome chip system for fully automated and integrated proteomics sample preparation and peptide fractionation. Anal Chem. 2020;92:8893-900.
Ou X, He M, Chen B, Hu B. One-step synthesis of mercapto modified hierarchical porous polymer capillary monolithic column for chip based array microextraction of mercury species in cells. Chem Eng J. 2021;420:130414.
Antonelli G, Padoan A, Artusi C, Marinova M, Zaninotto M, Plebani M. Automated saliva processing for LC-MS/MS: Improving laboratory efficiency in cortisol and cortisone testing. Clin Biochem. 2016;49:518-20.
Pensi D, De Nicolò A, Pinon M, Pisciotta C, Calvo PL, Nonnato A, et al, First UHPLC-MS/MS method coupled with automated online SPE for quantification both of tacrolimus and everolimus in peripheral blood mononuclear cells and its application on samples from co-treated pediatric patients. J Mass Spectrom. 2017;52:187-95.
Jagadeesan KK, Rossetti C, Abdel Qader A, Reubsaet L, Sellergren B, Laurell T, et al. Filter plate-based screening of MIP SPE materials for capture of the biomarker pro-gastrin-releasing peptide. SLAS Discov. 2017;22:1253-61.
Lehmann S, Kieliba T, Beike J, Thevis M, Mercer-Chalmers-Bender K. Determination of 74 new psychoactive substances in serum using automated in-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1064:124-38.
Piyankarage SC, McGahee E, Feng J, Blount BC, Wang L. Automated solid phase extraction and polarity-switching tandem mass spectrometry technique for high throughput analysis of urine biomarkers for 14 tobacco-related compounds. ACS Omega. 2021;6:30901-9.
Gjerde J, Kjellevold M, Dahl L, Berg T, Bøkevoll A, and 3-Epi25 (OH) D3 in Breastmilk and Maternal- and Infant Plasma during Breastfeeding. 2020;25.
da Silva LF, Vargas Medina DA, Lanças FM. Automated needle-sleeve based online hyphenation of solid-phase microextraction and liquid chromatography. Talanta. 2021;221:121608.
Asiabi H, Yamini Y, Seidi S, Ghahramanifard F. Preparation and evaluation of a novel molecularly imprinted polymer coating for selective extraction of indomethacin from biological samples by electrochemically controlled in-tube solid phase microextraction. Anal Chim Acta. 2016;913:76-85.
Kataoka H, Mizuno K, Oda E, Saito A. Determination of the oxidative stress biomarker urinary 8-hydroxy-2’-deoxyguanosine by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1019:140-6.
Saito A, Hamano M, Kataoka H. Simultaneous analysis of multiple urinary biomarkers for the evaluation of oxidative stress by automated online in-tube solid-phase microextraction coupled with negative/positive ion-switching mode liquid chromatography-tandem mass spectrometry. J Sep Sci. 2018;41:2743-9.
Ishizaki A, Uemura A, Kataoka H. A sensitive method to determine melatonin in saliva by automated online in-tube solid-phase microextraction coupled with stable isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Methods. 2017;9:3134-40.
Ishizaki A, Kataoka H. Online in-tube solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry for the determination of tobacco-specific nitrosamines in hair samples. Molecules. 2021;26:2056.
Kataoka H, Nakayama D. Online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry for automated analysis of four sulfated steroid metabolites in saliva samples. Molecules. 2022;27:3225.
Argente-García A, Moliner-Martínez Y, López-García E, Campíns-Falcó P, Herráez-Hernández R. Application of carbon nanotubes modified coatings for the determination of amphetamines by in-tube solid-phase microextraction and capillary liquid chromatography. Separations. 2016;3:7.
González-Fuenzalida RA, López-García E, Moliner-Martínez Y, Campíns-Falcó P. Adsorbent phases with nanomaterials for in-tube solid-phase microextraction coupled on-line to liquid nanochromatography. J Chromatogr A. 2016;1432:17-25.
Prieto-Blanco MC, Peñafiel Barba S, Moliner-Martínez Y, Campíns-Falcó P. Footprint of carbonyl compounds in hand scent by in-tube solid-phase microextraction coupled to nano-liquid chromatography/diode array detection. J Chromatogr A. 2019;1596:241-9.
Helfer AG, Michely JA, Weber AA, Meyer MR, Maurer HH. LC-HR-MS/MS standard urine screening approach: Pros and cons of automated on-line extraction by turbulent flow chromatography versus dilute-and-shoot and comparison with established urine precipitation. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1043:138-49.
Schuster C, Paal M, Lindner J, Zoller M, Liebchen U, Scharf C, et al. Isotope dilution LC-orbitrap-HRMS with automated sample preparation for the simultaneous quantification of 11 antimycotics in human serum. J Pharm Biomed Anal. 2019;166:398-405.
De Wilde L, Roels K, Deventer K, Van Eenoo P. Automated sample preparation for the detection and confirmation of hypoxia-inducible factor stabilizers in urine. Biomed Chromatogr. 2021;35:1-10.
Marchioni C, Vieira TM, Miller Crotti AE, Crippa JA, Costa Queiroz ME. In-tube solid-phase microextraction with a dummy molecularly imprinted monolithic capillary coupled to ultra-performance liquid chromatography-tandem mass spectrometry to determine cannabinoids in plasma samples. Anal Chim Acta. 2020;1099:145-54.
Soares Maciel EV, de Toffoli AL, da Silva Alves J, Lanças FM. Multidimensional liquid chromatography employing a graphene oxide capillary column as the first dimension: Determination of antidepressant and antiepileptic drugs in urine. Molecules. 2020;25:1092. https://doi.org/10.3390/molecules25051092
Pot S, Gstöttner C, Heinrich K, Hoelterhoff S, Grunert I, Leiss M, et al. Fast analysis of antibody-derived therapeutics by automated multidimensional liquid chromatography - mass spectrometry. Anal Chim Acta. 2021;1184:339015.
Morisue Sartore D, Costa JL, Lanças FM, Santos-Neto ÁJ. Packed in-tube SPME-LC-MS/MS for fast and straightforward analysis of cannabinoids and metabolites in human urine. Electrophoresis. 2022;43:1555-66.
Tobiszewski M, Mechlińska A, Zygmunt B, Namieśnik J. Green analytical chemistry in sample preparation for determination of trace organic pollutants. TrAC Trends Anal Chem. 2009;28:943-51.
Suárez R, Clavijo S, Avivar J, Cerdà V. On-line in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction HPLC - UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant. Talanta. 2016;148:589-95.
Liu YM, Zhang FP, Jiao BY, Rao JY, Leng G. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples. J Chromatogr A. 2017;1493:1-9.
Goh SXL, Chong BHDa, Lee HK. Fully automated water sampling-surfactant-enhanced membrane bag liquid-phase microextraction-ultrahigh performance liquid chromatography-mass spectrometry. Anal Chem. 2020;92:5362-9.
Mafra G, Vieira AA, Merib J, Anderson JL, Carasek E. Single drop microextraction in a 96-well plate format: a step toward automated and high-throughput analysis. Anal Chim Acta. 2019;1063:159-66.
Rodríguez Cabal LF, Vargas Medina DA, Martins Lima A, Lanças FM, Santos-Neto ÁJ. Robotic-assisted dynamic large drop microextraction. J Chromatogr A. 2019;1608:460416.
Fernández-Amado M, Prieto-Blanco MC, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D. A novel and cost-effective method for the determination of fifteen polycyclic aromatic hydrocarbons in low volume rainwater samples. Talanta. 2016;155:175-84.
Stravs MA, Mechelke J, Ferguson PL, Singer H, Hollender J. Microvolume trace environmental analysis using peak-focusing online solid-phase extraction-nano-liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem. 2016;408:1879-90.
Serra-Mora P, Jornet-Martinez N, Moliner-Martinez Y, Campíns-Falcó P. In tube-solid phase microextraction-nano liquid chromatography: application to the determination of intact and degraded polar triazines in waters and recovered struvite. J Chromatogr A. 2017;1513:51-8.
Mei M, Huang X. Online analysis of five organic ultraviolet filters in environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction coupled with high-performance liquid chromatography. J Chromatogr A. 2017;1525:1-9.
Pang J, Yuan D, Huang X. On-line combining monolith-based in-tube solid phase microextraction and high-performance liquid chromatography- fluorescence detection for the sensitive monitoring of polycyclic aromatic hydrocarbons in complex samples. J Chromatogr A. 2018;1571:29-37.
Bu Y, Feng J, Tian Y, Wang X, Sun M, Luo C. An organically modified silica aerogel for online in-tube solid-phase microextraction. J Chromatogr A. 2017;1517:203-8.
Campíns-Falcó P, Verdú-Andrés J, Rodríguez-Palma C, Serra-Mora P, Herráez-Hernández R. Improving the on-line extraction of polar compounds by IT-SPME with silica nanoparticles modified phases. Separations. 2018;5:10.
Serra-Mora P, Herráez-Hernández R, Campíns-Falcó P. Minimizing the impact of sample preparation on analytical results: In-tube solid-phase microextraction coupled on-line to nano-liquid chromatography for the monitoring of tribenuron methyl in environmental waters. Sci Total Environ. 2020;721:137732. https://doi.org/10.1016/j.scitotenv.2020.137732
V Soares Maciel E, Lanças FM, de Toffoli A. L. Recent trends in sorption-based sample preparation and liquid chromatography techniques for food analysis. Electrophoresis. 2018;39:1582-96.
Shishov A, Volodina N, Nechaeva D, Gagarinova S, Bulatov A. An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages. Microchem J. 2019;144:469-73.
Timofeeva I, Timofeev S, Moskvin L, Bulatov A. A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat. Anal Chim Acta. 2017;949:35-42.
Frizzarin RM, Maya F, Estela JM, Cerdà V. Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages. Food Chem. 2016;212:759-67.
Li Z, Xia S, Bian C, Tong J. Salt-induced ionic liquid dispersive liquid-liquid microextraction and filter separation. Anal Methods. 2016;8:1096-102.
Shishov A, Terno P, Moskvin L, Bulatov A. In-syringe dispersive liquid-liquid microextraction using deep eutectic solvent as disperser: Determination of chromium (VI) in beverages. Talanta. 2020;206:120209.
Bazregar M, Rajabi M, Yamini Y, Asghari A. Improved in-tube electro-membrane extraction followed by high-performance liquid chromatography for simple and selective determination of ionic compounds: optimization by central composite design. J Sep Sci. 2017;40:2967-74.
Zarghampour F, Yamini Y, Baharfar M, Faraji M. Electromembrane extraction of biogenic amines in food samples by a microfluidic-chip system followed by dabsyl derivatization prior to high performance liquid chromatography analysis. J Chromatogr A. 2018;1556:21-8.
Medina DAV, Cabal LFR, Titato GM, Lanças FM, Santos-Neto ÁJ, Rodríguez Cabal LF, et al. Automated online coupling of robot-assisted single drop microextraction and liquid chromatography. J Chromatogr A. 2019;1595:66-72.
Lirio S, Liu WL, Lin CL, Lin CH, Huang HY. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples. J Chromatogr A. 2016;1428:236-45.
Wu H, Gao N, Zhang L, Li Y, Shi Y, Du L. Automated magnetic solid-phase extraction for synthetic food colorant determination. Food Anal Methods. 2016;9:614-23.
Gutiérrez-Valencia TM, García de Llasera MP. On-line MSPD-SPE-HPLC/FLD analysis of polycyclic aromatic hydrocarbons in bovine tissues. Food Chem. 2017;223:82-8.
Valencia G M T, Llasera G M P. Determination of organophosphorus pesticides in bovine tissue by an on-line coupled matrix solid-phase dispersion-solid phase extraction-high performance liquid chromatography with diode array detection method. J Chromatogr A. 2011;1218:6869-77.
Vakh C, Alaboud M, Lebedinets S, Korolev D, Postnov V, Moskvin L, et al. An automated magnetic dispersive micro-solid phase extraction in a fluidized reactor for the determination of fluoroquinolones in baby food samples. Anal Chim Acta. 2018;1001:59-69.
Cao M, Li Q, Zhang Y, Wang J, Zhai H, Ma J, et al. Determination of deoxynivalenol and its derivative in corn flour and wheat flour using automated on-line solid-phase extraction combined with LC-MS/MS. Bull Environ Contam Toxicol. 2021;107:248-54.
Khaled A, Singh V, Pawliszyn J. Comparison of solid-phase microextraction to solvent extraction and QuEChERS for quantitative analysis of veterinary drug residues in chicken and beef matrices. J Agric Food Chem. 2019;67:12663-9.
Gómez-Ríos GA, Tascon M, Reyes-Garcés N, Boyacl E, Poole J, Pawliszyn J. Quantitative analysis of biofluid spots by coated blade spray mass spectrometry, a new approach to rapid screening. Sci Rep. 2017;7:1-7.
Zhu WX, Yang JZ, Wang ZX, Wang CJ, Liu YF, Zhang L. Rapid determination of 88 veterinary drug residues in milk using automated TurborFlow online clean-up mode coupled to liquid chromatography-tandem mass spectrometry. Talanta. 2016;148:401-11.
Andrade MA, Lanças FM. Determination of Ochratoxin A in wine by packed in-tube solid phase microextraction followed by high performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A. 2017;1493:41-8.
Zhang C, Luo X, Wei T, Hu Y, Li G, Zhang Z. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food. J Chromatogr A. 2017;1519:28-37.
Cao Y-Q, Ai L-F, Wang Q, Chen X-L, Nian Q-X, Wang M-M, et al. Reusable 2-(Dimethylamino)ethyl methacrylate polymers on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry for rapid determination of acidic pesticides in foods. Food Anal Methods. 2018;11:3304-13.
Nian Q, Ai L, Li D, Chen X, Zhang L, Wang M, et al. Rapid monitoring of plant growth regulators in bean sprouts via automated on-line polymeric monolith solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2018;410:7239-47.
Mejía-Carmona K, Lanças FM. Modified graphene-silica as a sorbent for in-tube solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. Determination of xanthines in coffee beverages. J Chromatogr A. 2020;1621:461089. https://doi.org/10.1016/j.chroma.2020.461089
Sun M, Han S, Maloko Loussala H, Feng J, Li C, Ji X, et al. Graphene oxide-functionalized mesoporous silica for online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from honey and detection by high performance liquid chromatography-diode array detector. Microchem J. 2021;166:106263. https://doi.org/10.1016/j.microc.2021.106263
Yang SS, Yang YN, Li XL, Zhang Y. Determination of biogenic amines in cheese by on-line solid phase extraction coupled with capillary high performance liquid chromatography. Chinese J Anal Chem. 2016;44:396-402.
Serra-Mora P, Hakobyan L, Molins-Legua C, Pla-Tolós J, Campins-Falcó P, Moliner-Martinez Y. A sustainable on-line CapLC method for quantifying antifouling agents like irgarol-1051 and diuron in water samples: estimation of the carbon footprint. Sci Total Environ. 2016;569-570:611-8.
Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE - Analytical GREEnness metric approach and software. Anal Chem. 2020;92:10076-82.
Ballester-Caudet A, Navarro-Utiel R, Campos-Hernández I, Campíns-Falcó P. Evaluation of the sample treatment influence in green and sustainable assessment of liquid chromatography methods by the HEXAGON tool: Sulfonate-based dyes determination in meat samples. Green Anal Chem. 2022;3:100024.

Auteurs

Douglas M Sartore (DM)

Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.

Deyber A Vargas Medina (DA)

Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.

Marcio D Bocelli (MD)

Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.

Marcela Jordan-Sinisterra (M)

Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.

Álvaro J Santos-Neto (ÁJ)

Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.

Fernando M Lanças (FM)

Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH