Priorities and Challenges in Methodology for Human Health Risk Assessment from Combined Exposure to Multiple Chemicals.
chemical mixture
combined exposure
cumulative risk
human risk assessment
risk assessment methodology
Journal
Toxics
ISSN: 2305-6304
Titre abrégé: Toxics
Pays: Switzerland
ID NLM: 101639637
Informations de publication
Date de publication:
23 Apr 2023
23 Apr 2023
Historique:
received:
18
03
2023
revised:
10
04
2023
accepted:
11
04
2023
medline:
26
5
2023
pubmed:
26
5
2023
entrez:
26
5
2023
Statut:
epublish
Résumé
This paper reviews key elements in the assessment of human health effects from combined exposure to multiple chemicals taking into consideration current knowledge and challenges to identify areas where scientific advancement is mostly needed and proposes a decision-making scheme on the basis of existing methods and tools. The assumption of dose addition and estimation of the hazard index (HI) is considered as a starting point in component-based risk assessments. When, based on the generic HI approach, an unacceptable risk is identified, more specific risk assessment options may be implemented sequentially or in parallel depending on problem formulation, characteristics of the chemical group under assessment, exposure levels, data availability and resources. For prospective risk assessments, the reference point index/margin of exposure (RPI/MOET) (Option 1) or modified RPI/normalized MOET (mRPI/nMOET) (Option 2) approaches may be implemented focusing on the specific mixture effect. Relative potency factors (RPFs) may also be used in the RPI approach since a common uncertainty factor for each mixture component is introduced in the assessment. Increased specificity in the risk assessment may also be achieved when exposure of selected population groups is considered (Option 3/exposure). For retrospective risk assessments, human biomonitoring data available for vulnerable population groups (Option 3/susceptibility) may present more focused scenarios for consideration in human health risk management decisions. In data-poor situations, the option of using the mixture assessment factor (MAF) is proposed (Option 4), where an additional uncertainty factor is applied on each mixture component prior to estimating the HI. The magnitude of the MAF may be determined by the number of mixture components, their individual potencies and their proportions in the mixture, as previously reported. It is acknowledged that implementation of currently available methods and tools for human health risk assessment from combined exposure to multiple chemicals by risk assessors will be enhanced by ongoing scientific developments on new approach methodologies (NAMs), integrated approaches to testing and assessment (IATA), uncertainty analysis tools, data sharing platforms, risk assessment software as well as guideline development to meet legislative requirements.
Identifiants
pubmed: 37235216
pii: toxics11050401
doi: 10.3390/toxics11050401
pmc: PMC10224389
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Références
Int J Endocrinol. 2013;2013:828532
pubmed: 23762054
EFSA J. 2022 Oct 06;20(10):e07550
pubmed: 36237417
Crit Rev Toxicol. 2018 Oct;48(9):796-814
pubmed: 30632445
Toxicol Lett. 2008 Aug 15;180(2):151-6
pubmed: 18573621
Toxicology. 2014 Aug 1;322:14-22
pubmed: 24810611
Science. 2022 Feb 18;375(6582):eabe8244
pubmed: 35175820
Environ Int. 2018 May;114:95-106
pubmed: 29499452
EFSA J. 2018 Jan 24;16(1):e05123
pubmed: 32625671
Crit Rev Toxicol. 2019 Feb;49(2):174-189
pubmed: 30931677
EFSA J. 2019 Mar 25;17(3):e05634
pubmed: 32626259
Environ Health Perspect. 2012 Nov;120(11):1565-70
pubmed: 23008278
EFSA J. 2021 Feb 10;19(2):e06392
pubmed: 33613737
ACS Environ Au. 2022 Jul 19;2(5):376-395
pubmed: 37101455
EFSA J. 2019 Jun 06;17(6):e05708
pubmed: 32626331
Ecotoxicol Environ Saf. 2010 Feb;73(2):196-205
pubmed: 19783048
EFSA J. 2019 Sep 17;17(9):e05800
pubmed: 32626428
Food Chem Toxicol. 2020 Jun;140:111306
pubmed: 32229153
Regul Toxicol Pharmacol. 2011 Apr 2;:
pubmed: 21466831
Int J Environ Res Public Health. 2022 May 18;19(10):
pubmed: 35627658
Crit Rev Toxicol. 2011 May;41(5):369-83
pubmed: 21309635
Arch Environ Contam Toxicol. 1998 May;34(4):414-23
pubmed: 9543513
Int J Hyg Environ Health. 2023 Mar;248:114097
pubmed: 36577283
ALTEX. 2002;19(2):73-8
pubmed: 12098013
Regul Toxicol Pharmacol. 2019 Apr;103:63-72
pubmed: 30653989
Food Chem Toxicol. 2020 Sep;143:111520
pubmed: 32640355
Science. 2018 Jul 20;361(6399):224-226
pubmed: 30026211
Environ Toxicol Chem. 2010 Mar;29(3):730-41
pubmed: 20821501
Food Chem Toxicol. 2020 Mar;137:111117
pubmed: 31927004
Sci Data. 2016 Mar 15;3:160018
pubmed: 26978244
EFSA J. 2021 Dec 17;19(12):e07033
pubmed: 34976164
EFSA J. 2017 Aug 03;15(8):e04971
pubmed: 32625632
Arch Toxicol. 2021 Jul;95(7):2589-2601
pubmed: 34156488
Curr Opin Pharmacol. 2014 Dec;19:105-11
pubmed: 25244397
Toxicol Sci. 2006 Oct;93(2):223-41
pubmed: 16829543
Int J Environ Res Public Health. 2011 Jun;8(6):2212-25
pubmed: 21776227
Arch Toxicol. 2021 Apr;95(4):1397-1411
pubmed: 33575850
Food Chem Toxicol. 2019 Dec;134:110812
pubmed: 31505235
Int J Hyg Environ Health. 2020 Sep;230:113622
pubmed: 33045523
Drug Metab Dispos. 1996 Apr;24(4):414-21
pubmed: 8801056
Environ Int. 2020 Jan;134:105267
pubmed: 31704565
Curr Opin Pediatr. 2014 Apr;26(2):223-9
pubmed: 24535499
Environ Int. 2018 Nov;120:544-562
pubmed: 30170309
Food Chem Toxicol. 2020 Aug;142:111416
pubmed: 32439593
Drug Saf. 1998 Feb;18(2):83-97
pubmed: 9512916
Regul Toxicol Pharmacol. 2014 Feb;68(1):119-39
pubmed: 24287156
Food Chem Toxicol. 2020 May;139:111283
pubmed: 32201337
J Stat Softw. 2017 Jul 17;79(4):1-26
pubmed: 30220889
Environ Sci Technol. 2021 May 18;55(10):6804-6813
pubmed: 33929821
Environ Health Perspect. 2022 Mar;130(3):35001
pubmed: 35238606
Regul Toxicol Pharmacol. 2016 Oct;80:321-34
pubmed: 27211294
EFSA J. 2019 Sep 17;17(9):e05801
pubmed: 32626429
EFSA J. 2017 Aug 03;15(8):e04970
pubmed: 32625631
Int J Hyg Environ Health. 2007 May;210(3-4):373-82
pubmed: 17337242
Crit Rev Toxicol. 2016 Nov;46(10):835-844
pubmed: 27685317