Effect of Uniaxial Compression Frequency on Osteogenic Cell Responses in Dynamic 3D Cultures.
3D scaffold
PCL
PHBV
PLLA
bioreactor
bone formation
dynamic cell culture
mechanical stimulation
osteogenic differentiation
uniaxial cyclic compression
Journal
Bioengineering (Basel, Switzerland)
ISSN: 2306-5354
Titre abrégé: Bioengineering (Basel)
Pays: Switzerland
ID NLM: 101676056
Informations de publication
Date de publication:
27 Apr 2023
27 Apr 2023
Historique:
received:
10
03
2023
revised:
24
04
2023
accepted:
24
04
2023
medline:
27
5
2023
pubmed:
27
5
2023
entrez:
27
5
2023
Statut:
epublish
Résumé
The application of mechanical stimulation on bone tissue engineering constructs aims to mimic the native dynamic nature of bone. Although many attempts have been made to evaluate the effect of applied mechanical stimuli on osteogenic differentiation, the conditions that govern this process have not yet been fully explored. In this study, pre-osteoblastic cells were seeded on PLLA/PCL/PHBV (90/5/5 wt.%) polymeric blend scaffolds. The constructs were subjected every day to cyclic uniaxial compression for 40 min at a displacement of 400 μm, using three frequency values, 0.5, 1, and 1.5 Hz, for up to 21 days, and their osteogenic response was compared to that of static cultures. Finite element simulation was performed to validate the scaffold design and the loading direction, and to assure that cells inside the scaffolds would be subjected to significant levels of strain during stimulation. None of the applied loading conditions negatively affected the cell viability. The alkaline phosphatase activity data indicated significantly higher values at all dynamic conditions compared to the static ones at day 7, with the highest response being observed at 0.5 Hz. Collagen and calcium production were significantly increased compared to static controls. These results indicate that all of the examined frequencies substantially promoted the osteogenic capacity.
Identifiants
pubmed: 37237602
pii: bioengineering10050532
doi: 10.3390/bioengineering10050532
pmc: PMC10215508
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : European Commission
ID : 814410
Références
Biomed Mater. 2015 Sep 21;10(5):055011
pubmed: 26391756
Gene. 2020 Sep 5;754:144855
pubmed: 32522695
J Oral Maxillofac Surg. 1990 Mar;48(3):276-82; discussion 282-3
pubmed: 2303937
Bone. 2003 Mar;32(3):241-51
pubmed: 12667551
J Biomech. 2002 Jul;35(7):873-80
pubmed: 12052389
Clin Orthop Relat Res. 1994 Jan;(298):165-74
pubmed: 8118971
Acta Biomater. 2013 Jul;9(7):7227-35
pubmed: 23523937
J Biomech. 2008;41(9):1885-91
pubmed: 18495131
J Biomed Mater Res A. 2015 Dec;103(12):3834-42
pubmed: 26097146
J Tissue Eng Regen Med. 2019 Nov;13(11):1992-2008
pubmed: 31359634
Calcif Tissue Int. 1985 Jul;37(4):431-6
pubmed: 3930042
J Orthop Res. 1992 May;10(3):385-93
pubmed: 1569501
Molecules. 2022 Nov 07;27(21):
pubmed: 36364463
J Biomech. 2005 Sep;38(9):1909-17
pubmed: 16023480
Med Biol Eng Comput. 2004 Jan;42(1):14-21
pubmed: 14977218
Ann Biomed Eng. 2010 May;38(5):1767-79
pubmed: 20217480
Med Biol Eng Comput. 1998 Jul;36(4):513-9
pubmed: 10198539
J Bone Joint Surg Am. 1984 Mar;66(3):397-402
pubmed: 6699056
Bioelectricity. 2021 Dec 1;3(4):255-271
pubmed: 35018335
J Bone Miner Res. 2004 Jun;19(6):1006-12
pubmed: 15125798
Biomaterials. 2010 Nov;31(33):8684-95
pubmed: 20739062
J Biomech. 2003 Sep;36(9):1363-71
pubmed: 12893045
Bone Miner. 1992 Dec;19(3):257-71
pubmed: 1472896
Calcif Tissue Int. 2004 May;74(5):458-68
pubmed: 14961210
Annu Rev Biomed Eng. 2007;9:1-34
pubmed: 17461730
Biotechnol Bioeng. 1998 Jan 5;57(1):46-54
pubmed: 10099177
J Biomech. 2000 Jan;33(1):45-51
pubmed: 10609517
Calcif Tissue Res. 1977 May;22 Suppl:202-7
pubmed: 199327
J Biomed Mater Res A. 2003 Oct 1;67(1):87-95
pubmed: 14517865
J Tissue Eng Regen Med. 2018 May;12(5):1220-1229
pubmed: 29489056
Gene. 2006 Feb 15;367:1-16
pubmed: 16361069
J Biomech. 2005 Sep;38(9):1895-901
pubmed: 16023478
Eur Cell Mater. 2010 Jul 21;20:45-57
pubmed: 20648425
Front Bioeng Biotechnol. 2020 Dec 14;8:598607
pubmed: 33381499
Front Biosci (Elite Ed). 2013 Jan 01;5(1):341-60
pubmed: 23276994
Front Bioeng Biotechnol. 2017 Feb 10;5:6
pubmed: 28239606
Eur Cell Mater. 2003 May 20;5:1-16; discussion 16
pubmed: 14562275
Head Face Med. 2006 Mar 31;2:8
pubmed: 16573842
J Biomed Mater Res A. 2015 Nov;103(11):3612-24
pubmed: 25847599
Am J Physiol. 1997 Sep;273(3 Pt 1):C810-5
pubmed: 9316399
Int J Biol Macromol. 2022 Jun 1;209(Pt B):1720-1730
pubmed: 35461864
Biomaterials. 2001 Jun;22(11):1279-88
pubmed: 11336300
J Biomech. 1995 Dec;28(12):1493-503
pubmed: 8666589
J Biomech. 1998 Nov;31(11):969-76
pubmed: 9880053
Bone Res. 2022 Feb 18;10(1):16
pubmed: 35181672
Biomaterials. 2009 Sep;30(25):4219-26
pubmed: 19477510
Bioengineering (Basel). 2018 Aug 12;5(3):
pubmed: 30103544
Calcif Tissue Int. 1988 Apr;42(4):261-6
pubmed: 2840180
J Biol Chem. 2008 Feb 29;283(9):5866-75
pubmed: 18089564
Biofactors. 2011 May-Jun;37(3):159-67
pubmed: 21674636
Arch Biochem Biophys. 2008 May 15;473(2):117-23
pubmed: 18334226
Cell Tissue Res. 2014 Oct;358(1):123-33
pubmed: 24916612
J Bone Miner Res. 2000 Jun;15(6):1024-32
pubmed: 10841171
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110698
pubmed: 32204012
Polymers (Basel). 2023 Feb 20;15(4):
pubmed: 36850334
J Mater Sci Mater Med. 2018 May 5;29(5):59
pubmed: 29730855
Bone Miner. 1993 Mar;20(3):201-9
pubmed: 8490324
Arch Oral Biol. 2013 Jul;58(7):826-36
pubmed: 23583016
Innov Surg Sci. 2016 Dec 3;1(2):57-63
pubmed: 31579720
J Cell Biochem. 2007 Aug 1;101(5):1266-77
pubmed: 17265428
Exp Mol Med. 2011 Jun 30;43(6):367-73
pubmed: 21532314
J Bone Joint Surg Am. 1991 Mar;73(3):320-31
pubmed: 1848246
Calcif Tissue Int. 1984;36 Suppl 1:S67-71
pubmed: 6430525