Pre-Planning the Surgical Target for Optimal Implant Positioning in Robotic-Assisted Total Knee Arthroplasty.
musculoskeletal modeling
optimal implant position
pre-diseased knee
pre-operative planning
robotic-assisted total knee arthroplasty
Journal
Bioengineering (Basel, Switzerland)
ISSN: 2306-5354
Titre abrégé: Bioengineering (Basel)
Pays: Switzerland
ID NLM: 101676056
Informations de publication
Date de publication:
28 Apr 2023
28 Apr 2023
Historique:
received:
25
03
2023
revised:
19
04
2023
accepted:
26
04
2023
medline:
27
5
2023
pubmed:
27
5
2023
entrez:
27
5
2023
Statut:
epublish
Résumé
Robotic-assisted total knee arthroplasty can attain highly accurate implantation. However, the target for optimal positioning of the components remains debatable. One of the proposed targets is to recreate the functional status of the pre-diseased knee. The aim of this study was to demonstrate the feasibility of reproducing the pre-diseased kinematics and strains of the ligaments and, subsequently, use that information to optimize the position of the femoral and tibial components. For this purpose, we segmented the pre-operative computed tomography of one patient with knee osteoarthritis using an image-based statistical shape model and built a patient-specific musculoskeletal model of the pre-diseased knee. This model was initially implanted with a cruciate-retaining total knee system according to mechanical alignment principles; and an optimization algorithm was then configured seeking the optimal position of the components that minimized the root-mean-square deviation between the pre-diseased and post-operative kinematics and/or ligament strains. With concurrent optimization for kinematics and ligament strains, we managed to reduce the deviations from 2.4 ± 1.4 mm (translations) and 2.7 ± 0.7° (rotations) with mechanical alignment to 1.1 ± 0.5 mm and 1.1 ± 0.6°, and the strains from 6.5% to lower than 3.2% over all the ligaments. These findings confirm that adjusting the implant position from the initial plan allows for a closer match with the pre-diseased biomechanical situation, which can be utilized to optimize the pre-planning of robotic-assisted surgery.
Identifiants
pubmed: 37237613
pii: bioengineering10050543
doi: 10.3390/bioengineering10050543
pmc: PMC10215074
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Stryker (Ireland)
ID : not applicable
Références
Knee Surg Sports Traumatol Arthrosc. 2020 Dec;28(12):3720-3732
pubmed: 32483671
Orthop Traumatol Surg Res. 2021 Feb;107(1S):102773
pubmed: 33333274
Clin Orthop Relat Res. 2018 Jan;476(1):126-134
pubmed: 29529627
Knee Surg Sports Traumatol Arthrosc. 2022 Feb;30(2):419-427
pubmed: 34973095
Arch Orthop Trauma Surg. 2020 Jul;140(7):933-940
pubmed: 32232619
Knee Surg Sports Traumatol Arthrosc. 2022 Sep;30(9):2991-2999
pubmed: 35962840
J Arthroplasty. 2018 Aug;33(8):2496-2501
pubmed: 29699827
Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23(10):3101-7
pubmed: 24894123
J Orthop Res. 2011 Jul;29(7):969-75
pubmed: 21567450
J Biomech Eng. 2015 Jul;137(7):
pubmed: 25955979
Biomed Mater Eng. 2015;25(2):177-87
pubmed: 25813956
Clin Orthop Relat Res. 2000 Nov;(380):72-9
pubmed: 11064975
J Arthroplasty. 2022 Jun;37(6S):S176-S181
pubmed: 35300880
Curr Rev Musculoskelet Med. 2014 Jun;7(2):89-95
pubmed: 24671469
Clin Orthop Relat Res. 2012 Nov;470(11):3227-32
pubmed: 22895689
Clin Biomech (Bristol, Avon). 2019 Jan;61:58-63
pubmed: 30481677
Bone Joint J. 2021 Mar;103-B(3):507-514
pubmed: 33467917
J Knee Surg. 2021 Jun;34(7):745-748
pubmed: 31694057
Knee Surg Sports Traumatol Arthrosc. 2015 Aug;23(8):2159-2169
pubmed: 24705849
Knee Surg Sports Traumatol Arthrosc. 2012 Jan;20(1):147-52
pubmed: 21717216
Surg Technol Int. 2017 Jul 25;30:441-446
pubmed: 28696495
J Knee Surg. 2019 Mar;32(3):239-250
pubmed: 29715696
J Biomech Eng. 2015 Feb 1;137(2):020904
pubmed: 25429519
Ann Rheum Dis. 2021 Apr;80(4):502-508
pubmed: 33188042
J Biomech. 2015 Mar 18;48(5):734-41
pubmed: 25627871
Bone Jt Open. 2022 May;3(5):383-389
pubmed: 35532348
Clin Orthop Relat Res. 2004 Nov;(428):26-34
pubmed: 15534515
J Biomech. 1986;19(6):425-32
pubmed: 3745219
Knee Surg Sports Traumatol Arthrosc. 2018 May;26(5):1540-1548
pubmed: 28500391
J Biomech Eng. 2017 Sep 1;139(9):
pubmed: 28639682
J Bone Joint Surg Br. 2012 Nov;94(11 Suppl A):112-5
pubmed: 23118396
J Bone Joint Surg Br. 2008 Sep;90(9):1121-7
pubmed: 18757949
J Orthop Res. 2014 Dec;32(12):1658-66
pubmed: 25171755
Osteoarthritis Cartilage. 2010 May;18(5):677-83
pubmed: 20219688
Front Bioeng Biotechnol. 2022 Nov 17;10:930724
pubmed: 36466330
J Arthroplasty. 2006 Aug;21(5):737-43
pubmed: 16877162
J Biomech Eng. 1983 May;105(2):136-44
pubmed: 6865355
J Bone Joint Surg Am. 2018 Mar 21;100(6):472-478
pubmed: 29557863
EFORT Open Rev. 2019 Oct 1;4(10):611-617
pubmed: 31754467
Clin Orthop Relat Res. 2012 Jan;470(1):45-53
pubmed: 21656315
Clin Orthop Relat Res. 2013 Jan;471(1):118-26
pubmed: 22669549
Int Orthop. 2014 Feb;38(2):319-28
pubmed: 24057656
Knee Surg Sports Traumatol Arthrosc. 2023 Apr;31(4):1420-1426
pubmed: 36116071
Eur J Orthop Surg Traumatol. 2022 Apr;32(3):383-393
pubmed: 33900452
J Appl Physiol (1985). 2002 Jan;92(1):362-71
pubmed: 11744679
BMC Musculoskelet Disord. 2023 Jan 30;24(1):76
pubmed: 36710346
Knee Surg Sports Traumatol Arthrosc. 2017 Aug;25(8):2602-2608
pubmed: 26531185