MultiResUNet3+: A Full-Scale Connected Multi-Residual UNet Model to Denoise Electrooculogram and Electromyogram Artifacts from Corrupted Electroencephalogram Signals.
1D-CNN
MultiResUNet3+
artifacts
deep learning
denoising
electroencephalogram (EEG)
electromyogram (EMG)
electrooculogram (EOG)
Journal
Bioengineering (Basel, Switzerland)
ISSN: 2306-5354
Titre abrégé: Bioengineering (Basel)
Pays: Switzerland
ID NLM: 101676056
Informations de publication
Date de publication:
10 May 2023
10 May 2023
Historique:
received:
05
04
2023
revised:
26
04
2023
accepted:
04
05
2023
medline:
27
5
2023
pubmed:
27
5
2023
entrez:
27
5
2023
Statut:
epublish
Résumé
Electroencephalogram (EEG) signals immensely suffer from several physiological artifacts, including electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) artifacts, which must be removed to ensure EEG's usability. This paper proposes a novel one-dimensional convolutional neural network (1D-CNN), i.e., MultiResUNet3+, to denoise physiological artifacts from corrupted EEG. A publicly available dataset containing clean EEG, EOG, and EMG segments is used to generate semi-synthetic noisy EEG to train, validate and test the proposed MultiResUNet3+, along with four other 1D-CNN models (FPN, UNet, MCGUNet, LinkNet). Adopting a five-fold cross-validation technique, all five models' performance is measured by estimating temporal and spectral percentage reduction in artifacts, temporal and spectral relative root mean squared error, and average power ratio of each of the five EEG bands to whole spectra. The proposed MultiResUNet3+ achieved the highest temporal and spectral percentage reduction of 94.82% and 92.84%, respectively, in EOG artifacts removal from EOG-contaminated EEG. Moreover, compared to the other four 1D-segmentation models, the proposed MultiResUNet3+ eliminated 83.21% of the spectral artifacts from the EMG-corrupted EEG, which is also the highest. In most situations, our proposed model performed better than the other four 1D-CNN models, evident by the computed performance evaluation metrics.
Identifiants
pubmed: 37237649
pii: bioengineering10050579
doi: 10.3390/bioengineering10050579
pmc: PMC10215884
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Qatar National Research Foundation (QNRF)
ID : NPRP12s-0227-190164
Organisme : Qatar University Student Grant
ID : QUST-799 1-CENG-2023-795
Organisme : North South University
ID : NSU CTRG-21-SEPS-20
Organisme : Universiti Kebangsaan Malaysia
ID : DIP-2020-004 and GUP-2021-019
Références
IEEE Trans Neural Syst Rehabil Eng. 2016 Jun;24(6):630-8
pubmed: 26552089
J Neural Eng. 2022 Apr 22;19(2):
pubmed: 35378524
J Neural Eng. 2017 Feb;14(1):016003
pubmed: 27900952
Neural Netw. 2020 Jan;121:74-87
pubmed: 31536901
Brain Topogr. 2018 May;31(3):337-345
pubmed: 29427251
Sensors (Basel). 2019 Feb 26;19(5):
pubmed: 30813520
IEEE Trans Biomed Eng. 2019 Oct;66(10):2924-2935
pubmed: 30762522
J Neural Eng. 2021 Oct 14;18(5):
pubmed: 34596046
Epilepsia. 2002 Feb;43(2):160-4
pubmed: 11903462
Comput Biol Med. 2022 Mar;142:105238
pubmed: 35077938
J Neural Eng. 2018 Jun;15(3):036007
pubmed: 29393057
Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9
pubmed: 1707798
IEEE Trans Biomed Eng. 2013 Jan;60(1):97-105
pubmed: 23086501
J Neurosci Methods. 2016 Aug 1;268:53-5
pubmed: 27172844
Epilepsia. 2004 Sep;45(9):1071-8
pubmed: 15329072
Sci Rep. 2018 Oct 2;8(1):14708
pubmed: 30279463
IEEE J Biomed Health Inform. 2020 Feb;24(2):465-474
pubmed: 31395568
Sensors (Basel). 2022 Apr 21;22(9):
pubmed: 35590859
IEEE Trans Biomed Eng. 2006 Dec;53(12 Pt 1):2583-7
pubmed: 17153216
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11
pubmed: 32613207
Neural Netw. 2005 Sep;18(7):998-1005
pubmed: 15990276
Neuroimage. 2010 Feb 1;49(3):2416-32
pubmed: 19833218
IEEE Trans Neural Netw Learn Syst. 2021 Sep;32(9):4039-4051
pubmed: 32841127
Neuroimage. 2019 May 1;191:21-35
pubmed: 30742980
IEEE J Biomed Health Inform. 2016 Sep;20(5):1301-8
pubmed: 26126290
IEEE J Biomed Health Inform. 2022 Oct;26(10):4913-4924
pubmed: 34826300
Sci Rep. 2018 Jun 11;8(1):8902
pubmed: 29891929
Front Neuroinform. 2020 Apr 30;14:15
pubmed: 32425763