Advances in Cellulose-Based Composites for Energy Applications.

batteries cellulose cellulose-based composites energy conversion energy storage flexible electronics green energy harvesting

Journal

Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929

Informations de publication

Date de publication:
20 May 2023
Historique:
received: 11 04 2023
revised: 15 05 2023
accepted: 18 05 2023
medline: 27 5 2023
pubmed: 27 5 2023
entrez: 27 5 2023
Statut: epublish

Résumé

The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.

Identifiants

pubmed: 37241483
pii: ma16103856
doi: 10.3390/ma16103856
pmc: PMC10221535
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Subventions

Organisme : A*STAR IMRE - SCG Chemicals Advanced Composite Joint Lab (IAF-ICP)
ID : I1801E0024
Organisme : Structural Power for portable and electrified transportation grant
ID : A20H3b0140
Organisme : A*STAR SERC MTC YIRG
ID : M21K3c0125

Références

Angew Chem Int Ed Engl. 2021 May 17;60(21):11943-11948
pubmed: 33689220
ACS Nano. 2020 Mar 24;14(3):3442-3450
pubmed: 32149493
ACS Nano. 2019 Oct 22;13(10):11901-11911
pubmed: 31580048
Adv Mater. 2018 Dec;30(51):e1801588
pubmed: 30066444
Adv Mater. 2018 Sep;30(39):e1802953
pubmed: 30141202
Biomacromolecules. 2007 Aug;8(8):2485-91
pubmed: 17630692
Adv Mater. 2021 Apr;33(13):e2007864
pubmed: 33594680
Adv Mater. 2014 Apr 2;26(13):2022-7
pubmed: 24343930
Nat Commun. 2017 Sep 1;8(1):405
pubmed: 28864823
Nanomicro Lett. 2020 Jun 17;12(1):131
pubmed: 34138146
Molecules. 2020 Jun 19;25(12):
pubmed: 32575550
Adv Sci (Weinh). 2019 Feb 07;6(8):1802128
pubmed: 31016118
RSC Adv. 2020 Mar 10;10(17):10097-10112
pubmed: 35498576
J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):1729-1736
pubmed: 34500171
Carbohydr Polym. 2021 Mar 1;255:117469
pubmed: 33436237
iScience. 2022 Jan 17;25(2):103782
pubmed: 35146395
J Agric Food Chem. 2020 Nov 18;68(46):12940-12955
pubmed: 32941033
Science. 2006 Apr 14;312(5771):242-6
pubmed: 16614215
Nanoscale. 2016 Mar 7;8(9):4938-44
pubmed: 26883097
Nanoscale. 2019 Oct 3;11(38):17725-17735
pubmed: 31549120
Carbohydr Polym. 2022 Jan 1;275:118740
pubmed: 34742443
Biomacromolecules. 2004 Sep-Oct;5(5):1671-7
pubmed: 15360274
Nat Commun. 2018 May 22;9(1):2014
pubmed: 29789569
Trends Biotechnol. 2017 Jul;35(7):610-624
pubmed: 28506573
Nat Commun. 2015 May 26;6:7170
pubmed: 26006731
J Colloid Interface Sci. 2021 Jul 15;594:389-397
pubmed: 33774395
ACS Omega. 2021 Oct 25;6(43):28710-28717
pubmed: 34746565
Nano Converg. 2021 Sep 2;8(1):25
pubmed: 34473311
Adv Sci (Weinh). 2017 May 29;4(7):1700107
pubmed: 28725532
ACS Nano. 2010 May 25;4(5):2955-63
pubmed: 20426409
Int J Biol Macromol. 2022 Dec 1;222(Pt B):1996-2005
pubmed: 36208805
Nanoscale. 2014 Jul 21;6(14):7764-79
pubmed: 24937092
Small. 2018 Nov;14(47):e1802444
pubmed: 30198091
ACS Appl Mater Interfaces. 2020 Mar 25;12(12):13950-13958
pubmed: 32125148
Adv Sci (Weinh). 2017 Jan 13;4(5):1600337
pubmed: 28546906
Adv Sci (Weinh). 2022 Sep;9(25):e2202380
pubmed: 35798275
Science. 2019 Aug 2;365(6452):491-494
pubmed: 31371614
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):53247-53256
pubmed: 33185423
Sci Rep. 2022 Nov 2;12(1):18533
pubmed: 36323728
Sci Rep. 2013;3:1536
pubmed: 23524333
Acc Chem Res. 2018 Dec 18;51(12):3154-3165
pubmed: 30299086
Sci Rep. 2020 Feb 17;10(1):2742
pubmed: 32066808
Adv Mater. 2016 Feb 17;28(7):1501-9
pubmed: 26643976
Energy Environ Sci. 2019 Feb 1;12(2):716-726
pubmed: 30930961
ACS Appl Mater Interfaces. 2019 Aug 14;11(32):29139-29146
pubmed: 31333008
Adv Mater. 2020 Sep;32(38):e2002824
pubmed: 32803872
Adv Sci (Weinh). 2017 Oct 26;4(12):1700465
pubmed: 29270352
ACS Appl Mater Interfaces. 2018 Mar 7;10(9):7946-7954
pubmed: 29425021
Small. 2013 Jul 22;9(14):2399-404
pubmed: 23653287
Carbohydr Polym. 2018 Jun 1;189:145-151
pubmed: 29580391
ACS Appl Mater Interfaces. 2020 Dec 16;12(50):56403-56412
pubmed: 33284024
Adv Mater. 2015 Oct 21;27(39):6021-8
pubmed: 26314378
ACS Nano. 2020 Jan 28;14(1):724-735
pubmed: 31886646
ACS Nano. 2013 Jul 23;7(7):6037-46
pubmed: 23777461
Nanoscale. 2019 Jan 23;11(4):1520-1530
pubmed: 30620020
ACS Appl Mater Interfaces. 2018 Jan 17;10(2):1743-1751
pubmed: 29256587
Biotechnol Biofuels. 2011 Oct 19;4:41
pubmed: 22011342
ACS Appl Mater Interfaces. 2019 Apr 24;11(16):15079-15087
pubmed: 30920201
ACS Nano. 2020 Nov 24;14(11):14665-14674
pubmed: 32936611
ACS Nano. 2022 Apr 26;16(4):6244-6254
pubmed: 35312283
Sci Bull (Beijing). 2020 May 30;65(10):803-811
pubmed: 36659198
ACS Nano. 2018 Jul 24;12(7):6378-6388
pubmed: 29741364
Front Chem. 2020 May 06;8:392
pubmed: 32435633
ACS Macro Lett. 2012 Jul 17;1(7):867-870
pubmed: 35607134
ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9483-9
pubmed: 26998641
ACS Appl Mater Interfaces. 2017 Oct 11;9(40):34773-34782
pubmed: 28926228
Chem Commun (Camb). 2020 Sep 1;56(70):10167-10170
pubmed: 32747887
Chem Asian J. 2022 Nov 2;17(21):e202200784
pubmed: 36136058
ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22182-9
pubmed: 27505304
Plant J. 1998 Oct;16(2):183-90
pubmed: 22507135
Nanomicro Lett. 2022 Apr 28;14(1):115
pubmed: 35482231
Adv Mater. 2021 Jul;33(28):e2000619
pubmed: 32310313
RSC Adv. 2020 May 19;10(32):18945-18952
pubmed: 35518312
Small. 2020 Nov;16(44):e2002837
pubmed: 33030299
Carbohydr Polym. 2021 Nov 15;274:118620
pubmed: 34702450
ACS Nano. 2020 Nov 24;14(11):15428-15439
pubmed: 33030887
Adv Sci (Weinh). 2022 Dec;9(36):e2204624
pubmed: 36285805
ACS Appl Mater Interfaces. 2016 Jan 27;8(3):1555-8
pubmed: 26760435
Biotechnol Prog. 2017 Jul;33(4):1085-1095
pubmed: 28440054
J Colloid Interface Sci. 2020 Oct 1;577:256-264
pubmed: 32485409
Adv Sci (Weinh). 2019 Nov 27;7(2):1902269
pubmed: 31993292
Nanoscale. 2020 Jul 21;12(27):14651-14660
pubmed: 32614021
Chem Rev. 2017 Jan 25;117(2):796-837
pubmed: 27951633
Front Plant Sci. 2019 Mar 01;9:1894
pubmed: 30881371
Adv Mater. 2022 Sep;34(39):e2202892
pubmed: 35641316
ACS Appl Mater Interfaces. 2021 Mar 10;13(9):11205-11214
pubmed: 33645227
J Appl Microbiol. 2009 Aug;107(2):576-83
pubmed: 19302295
ACS Appl Mater Interfaces. 2014 May 14;6(9):6127-38
pubmed: 24746103
ACS Sens. 2019 Jun 28;4(6):1662-1669
pubmed: 31066550
Nanotechnology. 2015 Oct 16;26(41):415401
pubmed: 26404046
Int J Mol Sci. 2021 Nov 30;22(23):
pubmed: 34884787
Biotechnol Biofuels. 2010 May 24;3:10
pubmed: 20497524
Nano Lett. 2011 Feb 9;11(2):786-90
pubmed: 21241064
Small. 2018 May;14(21):e1704371
pubmed: 29675952
Sci Adv. 2016 Mar 04;2(3):e1501478
pubmed: 26973876
ACS Appl Mater Interfaces. 2022 Jul 18;:
pubmed: 35849824
ACS Appl Mater Interfaces. 2022 Jun 3;:
pubmed: 35658086
Nanomaterials (Basel). 2022 Aug 26;12(17):
pubmed: 36079997
Inorg Chem. 2022 May 2;61(17):6451-6458
pubmed: 35438965
Small. 2022 Sep;18(39):e2203327
pubmed: 36026535
Adv Mater. 2014 Apr 9;26(14):2262-7, 2110
pubmed: 24615860
Front Plant Sci. 2012 May 21;3:104
pubmed: 22661979
iScience. 2020 Sep 21;23(10):101597
pubmed: 33205013
ACS Appl Mater Interfaces. 2018 Jul 18;10(28):24181-24192
pubmed: 29947215
Materials (Basel). 2016 Dec 07;9(12):
pubmed: 28774113
Small. 2021 Mar;17(9):e1903760
pubmed: 31854101
Small. 2017 Nov;13(42):
pubmed: 28902985
Carbohydr Polym. 2021 Jan 1;251:116975
pubmed: 33142552
Nat Rev Mater. 2022;7(2):117-137
pubmed: 35075395
iScience. 2019 Sep 27;19:1090-1100
pubmed: 31527009
Nat Commun. 2020 Nov 23;11(1):5948
pubmed: 33230141
Nanotechnology. 2014 Dec 19;25(50):504005
pubmed: 25426973

Auteurs

Choon Peng Teng (CP)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.

Ming Yan Tan (MY)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.

Jessica Pei Wen Toh (JPW)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.

Qi Feng Lim (QF)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.

Xiaobai Wang (X)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.

Daniel Ponsford (D)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
Department of Chemistry, University College London, London WC1H 0AJ, UK.
Institute for Materials Discovery, University College London, London WC1E 7JE, UK.

Esther Marie JieRong Lin (EMJ)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.

Warintorn Thitsartarn (W)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.

Si Yin Tee (SY)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.

Classifications MeSH