Advances in Cellulose-Based Composites for Energy Applications.
batteries
cellulose
cellulose-based composites
energy conversion
energy storage
flexible electronics
green energy harvesting
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
20 May 2023
20 May 2023
Historique:
received:
11
04
2023
revised:
15
05
2023
accepted:
18
05
2023
medline:
27
5
2023
pubmed:
27
5
2023
entrez:
27
5
2023
Statut:
epublish
Résumé
The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.
Identifiants
pubmed: 37241483
pii: ma16103856
doi: 10.3390/ma16103856
pmc: PMC10221535
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Subventions
Organisme : A*STAR IMRE - SCG Chemicals Advanced Composite Joint Lab (IAF-ICP)
ID : I1801E0024
Organisme : Structural Power for portable and electrified transportation grant
ID : A20H3b0140
Organisme : A*STAR SERC MTC YIRG
ID : M21K3c0125
Références
Angew Chem Int Ed Engl. 2021 May 17;60(21):11943-11948
pubmed: 33689220
ACS Nano. 2020 Mar 24;14(3):3442-3450
pubmed: 32149493
ACS Nano. 2019 Oct 22;13(10):11901-11911
pubmed: 31580048
Adv Mater. 2018 Dec;30(51):e1801588
pubmed: 30066444
Adv Mater. 2018 Sep;30(39):e1802953
pubmed: 30141202
Biomacromolecules. 2007 Aug;8(8):2485-91
pubmed: 17630692
Adv Mater. 2021 Apr;33(13):e2007864
pubmed: 33594680
Adv Mater. 2014 Apr 2;26(13):2022-7
pubmed: 24343930
Nat Commun. 2017 Sep 1;8(1):405
pubmed: 28864823
Nanomicro Lett. 2020 Jun 17;12(1):131
pubmed: 34138146
Molecules. 2020 Jun 19;25(12):
pubmed: 32575550
Adv Sci (Weinh). 2019 Feb 07;6(8):1802128
pubmed: 31016118
RSC Adv. 2020 Mar 10;10(17):10097-10112
pubmed: 35498576
J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):1729-1736
pubmed: 34500171
Carbohydr Polym. 2021 Mar 1;255:117469
pubmed: 33436237
iScience. 2022 Jan 17;25(2):103782
pubmed: 35146395
J Agric Food Chem. 2020 Nov 18;68(46):12940-12955
pubmed: 32941033
Science. 2006 Apr 14;312(5771):242-6
pubmed: 16614215
Nanoscale. 2016 Mar 7;8(9):4938-44
pubmed: 26883097
Nanoscale. 2019 Oct 3;11(38):17725-17735
pubmed: 31549120
Carbohydr Polym. 2022 Jan 1;275:118740
pubmed: 34742443
Biomacromolecules. 2004 Sep-Oct;5(5):1671-7
pubmed: 15360274
Nat Commun. 2018 May 22;9(1):2014
pubmed: 29789569
Trends Biotechnol. 2017 Jul;35(7):610-624
pubmed: 28506573
Nat Commun. 2015 May 26;6:7170
pubmed: 26006731
J Colloid Interface Sci. 2021 Jul 15;594:389-397
pubmed: 33774395
ACS Omega. 2021 Oct 25;6(43):28710-28717
pubmed: 34746565
Nano Converg. 2021 Sep 2;8(1):25
pubmed: 34473311
Adv Sci (Weinh). 2017 May 29;4(7):1700107
pubmed: 28725532
ACS Nano. 2010 May 25;4(5):2955-63
pubmed: 20426409
Int J Biol Macromol. 2022 Dec 1;222(Pt B):1996-2005
pubmed: 36208805
Nanoscale. 2014 Jul 21;6(14):7764-79
pubmed: 24937092
Small. 2018 Nov;14(47):e1802444
pubmed: 30198091
ACS Appl Mater Interfaces. 2020 Mar 25;12(12):13950-13958
pubmed: 32125148
Adv Sci (Weinh). 2017 Jan 13;4(5):1600337
pubmed: 28546906
Adv Sci (Weinh). 2022 Sep;9(25):e2202380
pubmed: 35798275
Science. 2019 Aug 2;365(6452):491-494
pubmed: 31371614
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):53247-53256
pubmed: 33185423
Sci Rep. 2022 Nov 2;12(1):18533
pubmed: 36323728
Sci Rep. 2013;3:1536
pubmed: 23524333
Acc Chem Res. 2018 Dec 18;51(12):3154-3165
pubmed: 30299086
Sci Rep. 2020 Feb 17;10(1):2742
pubmed: 32066808
Adv Mater. 2016 Feb 17;28(7):1501-9
pubmed: 26643976
Energy Environ Sci. 2019 Feb 1;12(2):716-726
pubmed: 30930961
ACS Appl Mater Interfaces. 2019 Aug 14;11(32):29139-29146
pubmed: 31333008
Adv Mater. 2020 Sep;32(38):e2002824
pubmed: 32803872
Adv Sci (Weinh). 2017 Oct 26;4(12):1700465
pubmed: 29270352
ACS Appl Mater Interfaces. 2018 Mar 7;10(9):7946-7954
pubmed: 29425021
Small. 2013 Jul 22;9(14):2399-404
pubmed: 23653287
Carbohydr Polym. 2018 Jun 1;189:145-151
pubmed: 29580391
ACS Appl Mater Interfaces. 2020 Dec 16;12(50):56403-56412
pubmed: 33284024
Adv Mater. 2015 Oct 21;27(39):6021-8
pubmed: 26314378
ACS Nano. 2020 Jan 28;14(1):724-735
pubmed: 31886646
ACS Nano. 2013 Jul 23;7(7):6037-46
pubmed: 23777461
Nanoscale. 2019 Jan 23;11(4):1520-1530
pubmed: 30620020
ACS Appl Mater Interfaces. 2018 Jan 17;10(2):1743-1751
pubmed: 29256587
Biotechnol Biofuels. 2011 Oct 19;4:41
pubmed: 22011342
ACS Appl Mater Interfaces. 2019 Apr 24;11(16):15079-15087
pubmed: 30920201
ACS Nano. 2020 Nov 24;14(11):14665-14674
pubmed: 32936611
ACS Nano. 2022 Apr 26;16(4):6244-6254
pubmed: 35312283
Sci Bull (Beijing). 2020 May 30;65(10):803-811
pubmed: 36659198
ACS Nano. 2018 Jul 24;12(7):6378-6388
pubmed: 29741364
Front Chem. 2020 May 06;8:392
pubmed: 32435633
ACS Macro Lett. 2012 Jul 17;1(7):867-870
pubmed: 35607134
ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9483-9
pubmed: 26998641
ACS Appl Mater Interfaces. 2017 Oct 11;9(40):34773-34782
pubmed: 28926228
Chem Commun (Camb). 2020 Sep 1;56(70):10167-10170
pubmed: 32747887
Chem Asian J. 2022 Nov 2;17(21):e202200784
pubmed: 36136058
ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22182-9
pubmed: 27505304
Plant J. 1998 Oct;16(2):183-90
pubmed: 22507135
Nanomicro Lett. 2022 Apr 28;14(1):115
pubmed: 35482231
Adv Mater. 2021 Jul;33(28):e2000619
pubmed: 32310313
RSC Adv. 2020 May 19;10(32):18945-18952
pubmed: 35518312
Small. 2020 Nov;16(44):e2002837
pubmed: 33030299
Carbohydr Polym. 2021 Nov 15;274:118620
pubmed: 34702450
ACS Nano. 2020 Nov 24;14(11):15428-15439
pubmed: 33030887
Adv Sci (Weinh). 2022 Dec;9(36):e2204624
pubmed: 36285805
ACS Appl Mater Interfaces. 2016 Jan 27;8(3):1555-8
pubmed: 26760435
Biotechnol Prog. 2017 Jul;33(4):1085-1095
pubmed: 28440054
J Colloid Interface Sci. 2020 Oct 1;577:256-264
pubmed: 32485409
Adv Sci (Weinh). 2019 Nov 27;7(2):1902269
pubmed: 31993292
Nanoscale. 2020 Jul 21;12(27):14651-14660
pubmed: 32614021
Chem Rev. 2017 Jan 25;117(2):796-837
pubmed: 27951633
Front Plant Sci. 2019 Mar 01;9:1894
pubmed: 30881371
Adv Mater. 2022 Sep;34(39):e2202892
pubmed: 35641316
ACS Appl Mater Interfaces. 2021 Mar 10;13(9):11205-11214
pubmed: 33645227
J Appl Microbiol. 2009 Aug;107(2):576-83
pubmed: 19302295
ACS Appl Mater Interfaces. 2014 May 14;6(9):6127-38
pubmed: 24746103
ACS Sens. 2019 Jun 28;4(6):1662-1669
pubmed: 31066550
Nanotechnology. 2015 Oct 16;26(41):415401
pubmed: 26404046
Int J Mol Sci. 2021 Nov 30;22(23):
pubmed: 34884787
Biotechnol Biofuels. 2010 May 24;3:10
pubmed: 20497524
Nano Lett. 2011 Feb 9;11(2):786-90
pubmed: 21241064
Small. 2018 May;14(21):e1704371
pubmed: 29675952
Sci Adv. 2016 Mar 04;2(3):e1501478
pubmed: 26973876
ACS Appl Mater Interfaces. 2022 Jul 18;:
pubmed: 35849824
ACS Appl Mater Interfaces. 2022 Jun 3;:
pubmed: 35658086
Nanomaterials (Basel). 2022 Aug 26;12(17):
pubmed: 36079997
Inorg Chem. 2022 May 2;61(17):6451-6458
pubmed: 35438965
Small. 2022 Sep;18(39):e2203327
pubmed: 36026535
Adv Mater. 2014 Apr 9;26(14):2262-7, 2110
pubmed: 24615860
Front Plant Sci. 2012 May 21;3:104
pubmed: 22661979
iScience. 2020 Sep 21;23(10):101597
pubmed: 33205013
ACS Appl Mater Interfaces. 2018 Jul 18;10(28):24181-24192
pubmed: 29947215
Materials (Basel). 2016 Dec 07;9(12):
pubmed: 28774113
Small. 2021 Mar;17(9):e1903760
pubmed: 31854101
Small. 2017 Nov;13(42):
pubmed: 28902985
Carbohydr Polym. 2021 Jan 1;251:116975
pubmed: 33142552
Nat Rev Mater. 2022;7(2):117-137
pubmed: 35075395
iScience. 2019 Sep 27;19:1090-1100
pubmed: 31527009
Nat Commun. 2020 Nov 23;11(1):5948
pubmed: 33230141
Nanotechnology. 2014 Dec 19;25(50):504005
pubmed: 25426973