Can we predict postinflammatory hyperpigmentation after laser treatment based on dermoscopic findings of solar lentigo?
Dermoscopy
Laser
Pigmentary disorders
Solar lentigo
Journal
Lasers in medical science
ISSN: 1435-604X
Titre abrégé: Lasers Med Sci
Pays: England
ID NLM: 8611515
Informations de publication
Date de publication:
29 May 2023
29 May 2023
Historique:
received:
06
11
2022
accepted:
16
05
2023
medline:
31
5
2023
pubmed:
29
5
2023
entrez:
29
5
2023
Statut:
epublish
Résumé
Solar lentigo (SL) commonly occurs as hyperpigmented macules in areas exposed to ultraviolet radiation. It typically shows an increased number of melanocytes in the basal cell layer of the skin, with or without elongated rete ridges. This retrospective study aimed to evaluate the characteristic dermoscopic patterns, reflecting different histopathological features, which might be valuable in predicting the possibility of postinflammatory hyperpigmentation (PIH) occurring after laser treatment. In total, 88 Korean patients diagnosed with biopsy-proven SL (a total of 90 lesions were diagnosed) between January, 2016 and December, 2021 were included. Histopathological patterns were classified into six categories. Dermoscopic features were classified into six categories. Pseudonetwork pattern and rete ridge elongation showed a statistically significant negative correlation. This means that a flatter epidermis is likely to manifest as a pseudonetwork pattern. The erythema pattern showed a significant positive correlation with interface changes and inflammatory infiltration. Bluish-gray granules (peppering), a characteristic dermoscopic finding, showed significant positive correlations with interface changes, inflammatory infiltration, and dermal melanophages. Clinicians considering laser treatment for patients with SL should perform dermoscopic tests before treatment. The pseudonetwork relates to flattened epidermis and fewer Langerhans cells; thus, a lower remission of PIH after laser treatment might be expected. If bluish-gray granules or erythema are observed, inflammatory conditions are likely to be involved. In such cases, regression of the inflammatory response through drug therapy, such as topical corticosteroids, should be a priority option before laser treatment.
Identifiants
pubmed: 37247095
doi: 10.1007/s10103-023-03790-6
pii: 10.1007/s10103-023-03790-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
130Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
Références
Shin J, Park J-Y, Kim SJ, Kang HY (2015) Characteristics of keratinocytes in facial solar lentigo with flattened rete ridges: comparison with melasma. Clin Exp Dermatol 40(5):489–494. https://doi.org/10.1111/ced.12621
doi: 10.1111/ced.12621
pubmed: 25704166
Jung Joon Min, Yang Heejoo, Lee Woo Jin et al (2020) Inflammatory features and rete ridge patterns of facial solar lentigo may guide laser treatment. Dermatologic Therapy 33(4):e13464. https://doi.org/10.1111/dth.13464
doi: 10.1111/dth.13464
pubmed: 32338412
Scarcella G, Dethlefsen MW, Nielsen MCE (2018) Treatment of solar lentigines using a combination of picosecond laser and biophotonic treatment. Clin Case Rep 6(9):1868–1870. https://doi.org/10.1002/ccr3.1749
doi: 10.1002/ccr3.1749
pubmed: 30214780
pmcid: 6132099
Barysch MJ, Braun RP, Kolm I, Ahlgrimm-Siesz V et al (2019) Keratinocytic malfunction as a trigger for the development of solar lentigines. Dermatopathology 6:1–11. https://doi.org/10.1159/000495404
doi: 10.1159/000495404
pubmed: 30800656
pmcid: 6381907
Yonei N, Kaminaka C, Kimura A, Fukumi FURUKAWA (2012) Two patterns of solar lentigines: a histopathological analysis of 40 Japanese women. J Dermatol 39(10):829–832. https://doi.org/10.1111/j.1346-8138.2012.01574.x
doi: 10.1111/j.1346-8138.2012.01574.x
pubmed: 22568408
Adya KA, Inamadar AC, Palit A (2020) Dermoscopic pigment network: characteristics in non-melanocytic disorders. Indian Dermatol Online J 11(2):146–153. https://doi.org/10.4103/idoj.IDOJ_246_19
doi: 10.4103/idoj.IDOJ_246_19
pubmed: 32477970
pmcid: 7247650
Goncharova Yana, Attia Enas A S, Souid Khawla, Vasilenko Inna V (2013) Dermoscopic features of facial pigmented skin lesions. ISRN Dermatol 2013:546813. https://doi.org/10.1155/2013/546813
doi: 10.1155/2013/546813
pubmed: 23431466
pmcid: 3574755
Masaru TANAKA, Mizuki SAWADA, Ken KOBAYASHI (2011) Key points in dermoscopic differentiation between lentigo maligna and solar lentigo. J Dermatol 38(1):53–58. https://doi.org/10.1111/j.1346-8138.2010.01132.x
doi: 10.1111/j.1346-8138.2010.01132.x
Kendall M, Gibbons JD (1990) Rank correlation methods, 5th edn. Oxford University Press, New York
Andersen WK, Labadie RR, Bhawan J (1997) Histopathology of solar lentigines of the face: a quantitative study. J Am Acad Dermatol 36(3 Pt 1):444–447. https://doi.org/10.1016/s0190-9622(97)80224-1
doi: 10.1016/s0190-9622(97)80224-1
pubmed: 9091478
Bartosik J (1991) Melanosome complexes and melanin macroglobules in normal human skin. Acta Derm Venereol 71(4):283–286
pubmed: 1681642
Kasuya A, Aoshima M, Fukuchi K et al (2019) An intuitive explanation of dermoscopic structures by digitally reconstructed pathological horizontal top-down view images. Sci Rep 9(1):19875. https://doi.org/10.1038/s41598-019-56522-8
doi: 10.1038/s41598-019-56522-8
pubmed: 31882764
pmcid: 6934765
Cardinali G, Kovacs D, Picardo M (2012) Mechanisms underlying post-inflammatory hyperpigmentation: lessons from solar lentigo. Ann Dermatol Venereol 139(Suppl 4):S148-152. https://doi.org/10.1016/S0151-9638(12)70127-8
doi: 10.1016/S0151-9638(12)70127-8
pubmed: 23522630
Aoki H, Moro O, Tagami H, Kishimoto J (2007) Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics. Br J Dermatol 156:1214–1223. https://doi.org/10.1111/j.1365-2133.2007.07830.x
doi: 10.1111/j.1365-2133.2007.07830.x
pubmed: 17419692
Goyarts E, Muizzuddin N, Maes D, Giacomoni PU (2007) Morphological changes associated with aging: age spots and the microinfl ammatory model of skin aging. Ann N Y Acad Sci 1119:32–39. https://doi.org/10.1196/annals.1404.006
doi: 10.1196/annals.1404.006
pubmed: 18056952
Kang HJ, Na JI, Lee JH, Roh MR et al (2017) Postinflammatory hyperpigmentation associated with treatment of solar lentigines using a Q-Switched 532-nm Nd: YAG laser: a multicenter survey. J Dermatolog Treat 28(5):447–451. https://doi.org/10.1080/09546634.2016.1254330
doi: 10.1080/09546634.2016.1254330
pubmed: 27786580
Bugatti L, Filosa G (2007) Dermoscopy of lichen planus-like keratosis: a model of inflammatory regression. J Eur Acad Dermatol Venereol 21(10):1392–1397. https://doi.org/10.1111/j.1468-3083.2007.02296.x
doi: 10.1111/j.1468-3083.2007.02296.x
pubmed: 17958847
Gori A, Oranges T, Janowska A, Savarese I (2018) Clinical and dermoscopic features of lichenoid keratosis: a retrospective case study. J Cutan Med Surg 22(6):561–566. https://doi.org/10.1177/1203475418786213
doi: 10.1177/1203475418786213
pubmed: 30016886
Zaballos P, Rodero J, Pastor L, Vives JM et al (2008) Dermoscopy of lichenoid regressing solar lentigines. Arch Dermatol 144(2):284. https://doi.org/10.1001/archdermatol.2007.61
doi: 10.1001/archdermatol.2007.61
pubmed: 18283198
Kim JS, Nam CH, Kim JY, Gye JW et al (2015) Objective evaluation of the effect of Q-switched Nd:YAG (532 nm) laser on solar lentigo by using a colorimeter. Ann Dermatol 27(3):326–328. https://doi.org/10.5021/ad.2015.27.3.326
doi: 10.5021/ad.2015.27.3.326
pubmed: 26082593
pmcid: 4466289
Paasch U, Zidane M, Baron JM, Bund T et al (2022) S2k guideline: Laser therapy of the skin. J Dtsch Dermatol Ges 20(9):1248–1267. https://doi.org/10.1111/ddg.14879
doi: 10.1111/ddg.14879
pubmed: 36162017
Silvestri M, Bennardo L, Zappia E et al (2021) Q-Switched 1064/532 nm laser with picosecond pulse to treat benign hyperpigmentations: a single-center retrospective study. Appl Sci 11(16):7478. https://doi.org/10.3390/app11167478
doi: 10.3390/app11167478