Capture and neutralization of SARS-CoV-2 and influenza virus by algae-derived lectins with high-mannose and core fucose specificities.
COVID-19
anti-virus
lectin
lectin-immobilized column
sugar chain
Journal
Microbiology and immunology
ISSN: 1348-0421
Titre abrégé: Microbiol Immunol
Pays: Australia
ID NLM: 7703966
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
revised:
02
05
2023
received:
09
12
2022
accepted:
14
05
2023
medline:
4
7
2023
pubmed:
30
5
2023
entrez:
29
5
2023
Statut:
ppublish
Résumé
We first investigated the interactions between several algae-derived lectins and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We created lectin columns using high-mannose (HM)-type glycan-specific lectins OAA and KAA-1 or core fucose-specific lectin hypninA-2 and conducted binding experiments with SARS-CoV-2. The results showed that these lectins were capable of binding to the virus. Furthermore, when examining the neutralization ability of nine different lectins, it was found that KAA-1, ESA-2, and hypninA-2 were effective in neutralizing SARS-CoV-2. In competitive inhibition experiments with glycoproteins, neutralization was confirmed to occur through HM-type or core fucose-type glycans. However, neutralization was not observed with other lectins, such as OAA. This trend of KAA-1 and ESA-2 having the neutralizing ability and OAA not having it was also similar to influenza viruses. Electron microscopy observations revealed that KAA-1 and hypninA-2 strongly aggregated SARS-CoV-2 particles, while OAA showed a low degree of aggregation. It is believed that the neutralization of SARS-CoV-2 involves multiple factors, such as glycan attachment sites on the S protein, the size of lectins, and their propensity to aggregate, which cause inhibition of receptor binding or aggregation of virus particles. This study demonstrated that several algae-derived lectins could neutralize SARS-CoV-2 and that lectin columns can effectively recover and concentrate the virus.
Identifiants
pubmed: 37248051
doi: 10.1111/1348-0421.13082
doi:
Substances chimiques
Mannose
PHA4727WTP
Fucose
28RYY2IV3F
Lectins
0
Mannose-Binding Lectins
0
Polysaccharides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
334-344Subventions
Organisme : Government-Academia Collaboration of Hiroshima Prefecture
Organisme : Japan Science and Technology Agency
ID : JPMJSP2132
Organisme : Otsuka Toshimi Scholarship Foundation
Organisme : Japan Agency for Medical Research and Development
ID : JP20fk0108453
Organisme : Japan Agency for Medical Research and Development
ID : JP20he0622011
Organisme : Japan Agency for Medical Research and Development
ID : JP21fk0108550
Organisme : Japan Agency for Medical Research and Development
ID : JP21fk0108558
Informations de copyright
© 2023 The Societies and John Wiley & Sons Australia, Ltd.
Références
Dhama K, Khan S, Tiwari R, et al. Coronavirus disease 2019-COVID-19. Clin Microbiol Rev. 2020;33:e00028-20. https://doi.org/10.1128/CMR.00028-20
Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;588:498-502. https://doi.org/10.1038/s41586-020-2665-2
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-80.e8. https://doi.org/10.1016/j.cell.2020.02.052
Walls AC, Park YJ, Tortorici MA, Wall A, Mcguire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281-92. https://doi.org/10.1016/j.cell.2020.02.058
Shajahan A, Supekar NT, Gleinich AS, Azadi P. Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology. 2020;30:981-8. https://doi.org/10.1093/glycob/cwaa042
Watanabe Y, Allen JD, Wrapp D, Mclellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369:330-3. https://doi.org/10.1126/science.abb9983
Zhang Y, Zhao W, Mao Y, et al. Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins. Mol Cell Proteomics. 2021;20:100058. https://doi.org/10.1074/mcp.RA120.002295
Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Sci Rep. 2020;10:14991. https://doi.org/10.1038/s41598-020-71748-7
Casalino L, Gaieb Z, Goldsmith JA, et al. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent Sci. 2020;6:1722-34. https://doi.org/10.1021/acscentsci.0c01056
Ahan RE, Hanifehnezhad A, Kehribar EŞ, et al. A highly potent SARS-CoV-2 blocking lectin protein. ACS Infect Dis. 2022;8:1253-64. https://doi.org/10.1021/acsinfecdis.2c00006
Cai Y, Xu W, Gu C, et al. Griffithsin with a broad-spectrum antiviral activity by binding glycans in viral glycoprotein exhibits strong synergistic effect in combination with a pan-coronavirus fusion inhibitor targeting SARS-CoV-2 spike S2 subunit. Virol Sin. 2020;35:857-60. https://doi.org/10.1007/s12250-020-00305-3
Liu YM, Shahed-Al-Mahmud M, Chen X, et al. A carbohydrate-binding protein from the edible lablab beans effectively blocks the infections of influenza viruses and SARS-CoV-2. Cell Rep. 2020;32:108016. https://doi.org/10.1016/j.celrep.2020.108016
Sarkar A, Paul S, Singh C, et al. A novel plant lectin, NTL-125, interferes with SARS-CoV-2 interaction with hACE2. Virus Res. 2022;315:198768. https://doi.org/10.1016/j.virusres.2022.198768
Sheehan SA, Hamilton KL, Retzbach EP, et al. Evidence that Maackia amurensis seed lectin (MASL) exerts pleiotropic actions on oral squamous cells with potential to inhibit SARS-CoV-2 infection and COVID-19 disease progression. Exp Cell Res. 2021;403:112594. https://doi.org/10.1016/j.yexcr.2021.112594
Wang W, Li Q, Wu J, et al. Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants. Emerg Microbes Infect. 2021;10:1519-29. https://doi.org/10.1080/22221751.2021.1957720
Hirayama M, Shibata H, Imamura K, Sakaguchi T, Hori K. High-mannose specific lectin and its recombinants from a Carrageenophyta Kappaphycus alvarezii represent a potent anti-HIV activity through high-affinity binding to the viral envelope glycoprotein gp120. Mar Biotechnol. 2016;18:144-60. https://doi.org/10.1007/s10126-015-9677-1
Sato Y, Hirayama M, Morimoto K, Yamamoto N, Okuyama S, Hori K. High mannose-binding lectin with preference for the cluster of α1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J Biol Chem. 2011;286:19446-58. https://doi.org/10.1074/jbc.M110.216655
Sato Y, Morimoto K, Hirayama M, Hori K. High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochem Biophys Res Commun. 2011;405:291-6. https://doi.org/10.1016/j.bbrc.2011.01.031
Sato Y, Morimoto K, Kubo T, et al. Entry inhibition of influenza viruses with high mannose binding lectin ESA-2 from the red alga Eucheuma serra through the recognition of viral hemagglutinin. Mar Drugs. 2015;13:3454-65. https://doi.org/10.3390/md13063454
Sato Y, Okuyama S, Hori K. Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii. J Biol Chem. 2007;282:11021-9. https://doi.org/10.1074/jbc.M701252200
Okuyama S, Nakamura-Tsuruta S, Tateno H, Hirabayashi J, Matsubara K, Hori K. Strict binding specificity of small-sized lectins from the red algaHypnea japonica for Core (α1-6) Fucosylated N-glycans. Biosci Biotechnol Biochem. 2009;73:912-20. https://doi.org/10.1271/bbb.80881
Hori K, Sato Y, Ito K, et al. Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin. Glycobiology. 2007;17:479-91. https://doi.org/10.1093/glycob/cwm007
Boyd MR, Gustafson KR, McMahon JB, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother. 1997;41:1521-30. https://doi.org/10.1128/AAC.41.7.1521
Bewley CA. Solution structure of a Cyanovirin-N:Manα1-2Manα complex. Structure. 2001;9:931-40. https://doi.org/10.1016/s0969-2126(01)00653-0
Yamaguchi M, Ogawa T, Muramoto K, Kamio Y, Jimbo M, Kamiya H. Isolation and characterization of a mannan-binding lectin from the freshwater cyanobacterium (blue-green algae) Microcystis viridis. Biochem Biophys Res Commun. 1999;265:703-8. https://doi.org/10.1006/bbrc.1999.1749
Williams Jr. DC, Lee JY, Cai M. Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2. J Biol Chem. 2005;280:29269-76. https://doi.org/10.1074/jbc.M504642200
Hori K, Matsubara K, Miyazawa K. Primary structures of two hemagglutinins from the marine red alga, Hypnea japonica. Biochim Biophys Acta. 2000;1474:226-36. https://doi.org/10.1016/s0304-4165(00)00008-8
Armstrong N, Lencastre AD, Gouaux E. A new protein folding screen: application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase. Prot Sci. 1999;8:1475-83. https://doi.org/10.1110/ps.8.7.1475
Nomura T, Nazmul T, Yoshimoto R, Higashiura A, Oda K, Sakaguchi T. Ethanol susceptibility of SARS-CoV-2 and other enveloped viruses. Biocontrol Sci. 2021;26:177-80. https://doi.org/10.4265/bio.26.177
Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci. 2020;117:7001-3. https://doi.org/10.1073/pnas.2002589117
Noma K, Kiyotani K, Kouchi H, et al. Endogenous protease-dependent replication of human influenza viruses in two MDCK cell lines. Arch Virol. 1998;143:1893-909. https://doi.org/10.1007/s007050050428
Ueda K, Kawabata R, Irie T, Nakai Y, Tohya Y, Sakaguchi T. Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki) on a broad range of viruses. PLoS One. 2013;8:e55343. https://doi.org/10.1371/jornal.pone.0055343
Kitagawa H, Nomura T, Nazmul T, et al. Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. Am J Infect Control. 2021;49:299-301. https://doi.org/10.1016/j.ajic.2020.08.022
Yamasaki K, Adachi N, Ngwe Tun MM, et al. Core fucose-specific Pholiota squarrosa lectin (PhoSL) as a potent broad-spectrum inhibitor of SARS-CoV-2 infection. FEBS J. 2022;290:412-27. https://doi.org/10.1111/febs.16599
Barre A, Simplicien M, Benoist H, Van Damme EJM, Rougé P. Mannose-specific lectins from marine algae: diverse structural scaffolds associated to common virucidal and anti-cancer properties. Mar Drugs. 2019;17:440. https://doi.org/10.3390/md17080440
Barre A, Van Damme EJM, Klonjkowski B, et al. Legume lectins with different specificities as potential glycan probes for pathogenic enveloped viruses. Cells. 2022;11:339. https://doi.org/10.3390/cells11030339
Kitajima M, Ahmed W, Bibby K, et al. SARS-CoV-2 in wastewater: state of the knowledge and research needs. Sci Total Environ. 2020;739:139076. https://doi.org/10.1016/j.scitotenv.2020.139076
Panchal D, Prakash O, Bobde P, Pal S. SARS-CoV-2: sewage surveillance as an early warning system and challenges in developing countries. Environ Sci Pollut Res. 2021;28:22221-40. https://doi.org/10.1007/s11356-021-13170-8