Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer's disease.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
07 2023
Historique:
received: 23 01 2023
accepted: 01 05 2023
medline: 21 7 2023
pubmed: 30 5 2023
entrez: 29 5 2023
Statut: ppublish

Résumé

An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-β (Aβ)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash Aβ effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of Aβ with tau phosphorylation in CU individuals. We found that Aβ was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast

Identifiants

pubmed: 37248300
doi: 10.1038/s41591-023-02380-x
pii: 10.1038/s41591-023-02380-x
pmc: PMC10353939
doi:

Substances chimiques

Amyloid beta-Peptides 0
Biomarkers 0
tau Proteins 0
APP protein, human 0
MAPT protein, human 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1775-1781

Subventions

Organisme : NIA NIH HHS
ID : R01 AG075336
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG052521
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG052528
Pays : United States
Organisme : NIA NIH HHS
ID : R37 AG023651
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG053504
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG066468
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG073267
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG052525
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105647
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG014449
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG025516
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG052446
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG053504
Pays : United States
Organisme : NHLBI NIH HHS
ID : K24 HL123565
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG025204
Pays : United States

Commentaires et corrections

Type : UpdateOf

Informations de copyright

© 2023. The Author(s).

Références

Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).
pubmed: 23332364 pmcid: 3622225
Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 27, 954–963 (2021).
pubmed: 34083813
Milà-Alomà, M. et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease. Nat. Med. 28, 1797–1801 (2022).
pubmed: 35953717 pmcid: 9499867
Hanseeuw, B. J. et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol. 76, 915–924 (2019).
pubmed: 31157827 pmcid: 6547132
Ossenkoppele, R. et al. Accuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA Neurol. 78, 961–971 (2021).
pubmed: 34180956 pmcid: 8240013
Ossenkoppele, R. et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 28, 2381–2387 (2022).
pubmed: 36357681 pmcid: 9671808
Roberts, R. O. et al. Prevalence and outcomes of amyloid positivity among persons without dementia in a longitudinal, population-based setting. JAMA Neurol. 75, 970–979 (2018).
pubmed: 29710225 pmcid: 6142936
Josephs, K. A., Weigand, S. D. & Whitwell, J. L. Characterizing amyloid-positive individuals with normal tau PET levels after 5 years: an ADNI study. Neurology 98, e2282–e2292 (2022).
pubmed: 35314506 pmcid: 9162162
Nordberg, A. Dementia in 2014. Towards early diagnosis in Alzheimer disease. Nat. Rev. Neurol. 11, 69–70 (2015).
pubmed: 25623789
Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).
pubmed: 21514248 pmcid: 3220946
Pike, C. J., Cummings, B. J. & Cotman, C. W. Early association of reactive astrocytes with senile plaques in Alzheimer’s disease. Exp. Neurol. 132, 172–179 (1995).
pubmed: 7789457
Beach, T. G., Walker, R. & McGeer, E. G. Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2, 420–436 (1989).
pubmed: 2531723
Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021).
pubmed: 33589835 pmcid: 8007081
Kumar, A., Fontana, I. C. & Nordberg, A. Reactive astrogliosis: a friend or foe in the pathogenesis of Alzheimer’s disease. J. Neurochem. 164, 309–324 (2023).
pubmed: 34931315
Wruck, W. & Adjaye, J. Meta-analysis of human prefrontal cortex reveals activation of GFAP and decline of synaptic transmission in the aging brain. Acta Neuropathol. Commun. 8, 26 (2020).
pubmed: 32138778 pmcid: 7059712
Garwood, C. J., Pooler, A. M., Atherton, J., Hanger, D. P. & Noble, W. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2, e167 (2011).
pubmed: 21633390 pmcid: 3168992
Mann, C. N. et al. Astrocytic α2-Na
pubmed: 35171651 pmcid: 9161722
Litvinchuk, A. et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron 100, 1337–1353 (2018).
pubmed: 30415998 pmcid: 6309202
de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).
pubmed: 22365544 pmcid: 3292759
Wang, P. & Ye, Y. Filamentous recombinant human tau activates primary astrocytes via an integrin receptor complex. Nat. Commun. 12, 95 (2021).
pubmed: 33398028 pmcid: 7782792
Benedet, A. L. et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum. JAMA Neurol. 78, 1471–1483 (2021).
pubmed: 34661615
Chatterjee, P. et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl. Psychiatry 11, 27 (2021).
pubmed: 33431793 pmcid: 7801513
Pereira, J. B. et al. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain 144, 3505–3516 (2021).
pubmed: 34259835 pmcid: 8677538
Chatterjee, P. et al. Plasma glial fibrillary acidic protein is associated with 18F-SMBT-1 PET: two putative astrocyte reactivity biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 92, 615–628 (2023).
pubmed: 36776057 pmcid: 10041433
Palmqvist, S. et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 8, 1214 (2017).
pubmed: 29089479 pmcid: 5663717
Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).
pubmed: 1759558
Jack, C. R. Jr et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).
pubmed: 29653606 pmcid: 5958625
Johansson, C. et al. Plasma biomarker profiles in autosomal dominant Alzheimer’s disease. Brain 146, 1132–1140 (2023).
pubmed: 36626935 pmcid: 9976964
Verberk, I. M. W. et al. Serum markers glial fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: a prospective memory clinic-based cohort study. Lancet Healthy Longev. 2, e87–e95 (2021).
pubmed: 36098162
Shen, X.-N. et al. Plasma glial fibrillary acidic protein in the Alzheimer disease continuum: relationship to other biomarkers, differential diagnosis, and prediction of clinical progression. Clin. Chem. 69, 411–421 (2023).
pubmed: 36861369
Buckley, R. F. et al. Sex differences in the association of global amyloid and regional tau deposition measured by positron emission tomography in clinically normal older adults. JAMA Neurol. 76, 542–551 (2019).
pubmed: 30715078 pmcid: 6515599
Palta, P. et al. Sex differences in in vivo tau neuropathology in a multiethnic sample of late middle-aged adults. Neurobiol. Aging 103, 109–116 (2021).
pubmed: 33894641 pmcid: 8178209
Tsiknia, A. A. et al. Sex differences in plasma p-tau181 associations with Alzheimer’s disease biomarkers, cognitive decline, and clinical progression. Mol. Psychiatry 27, 4314–4322 (2022).
pubmed: 35768637 pmcid: 9718670
van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).
pubmed: 36449413
Ganguli, M. et al. Prevalence of mild cognitive impairment by multiple classifications: the Monongahela-Youghiogheny Healthy Aging Team (MYHAT) project. Am. J. Geriatr. Psychiatry 18, 674–683 (2010).
pubmed: 20220597 pmcid: 2906673
Bambs, C. et al. Low prevalence of “ideal cardiovascular health” in a community-based population: the heart strategies concentrating on risk evaluation (Heart SCORE) study. Circulation 123, 850–857 (2011).
pubmed: 21321154 pmcid: 3061396
Cohen, A. D. et al. Connectomics in brain aging and dementia—the background and design of a study of a connectome related to human disease. Front. Aging Neurosci. 13, 669490 (2021).
pubmed: 34690734 pmcid: 8530182
Aizenstein, H. J. et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol. 65, 1509–1517 (2008).
pubmed: 19001171 pmcid: 2636844
Thurston, R. C. et al. Menopausal vasomotor symptoms and white matter hyperintensities in midlife women. Neurology 100, e133–e141 (2023).
pubmed: 36224031 pmcid: 9841446
Karikari, T. K. et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 19, 422–433 (2020).
pubmed: 32333900
Ashton, N. J. et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 141, 709–724 (2021).
pubmed: 33585983 pmcid: 8043944
Triana-Baltzer, G. et al. Development and validation of a high-sensitivity assay for measuring p217+tau in plasma. Alzheimers Dement. (Amst.) 13, e12204 (2021).
pubmed: 34095436
Ossenkoppele, R. et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 313, 1939–1949 (2015).
pubmed: 25988463 pmcid: 4517678
Jack, C. R. Jr. et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 13, 205–216 (2017).
pubmed: 27697430
Gräsbeck, R. The evolution of the reference value concept. Clin. Chem. Lab. Med. 42, 692–697 (2004).
pubmed: 15327001
Jensen, C. S. et al. Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Exp. Gerontol. 121, 91–98 (2019).
pubmed: 30980923
Therriault, J. et al. Determining amyloid-β positivity using (18)F-AZD4694 PET imaging. J. Nucl. Med. 62, 247–252 (2021).
pubmed: 32737243
Pascoal, T. A. et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain 143, 2818–2830 (2020).
pubmed: 32671408
Cohen, A. D. et al. Classification of amyloid-positivity in controls: comparison of visual read and quantitative approaches. Neuroimage 71, 207–215 (2013).
pubmed: 23353602
Mathotaarachchi, S. et al. VoxelStats: a MATLAB package for multi-modal voxel-wise brain image analysis. Front. Neuroinform. 10, 20 (2016).
pubmed: 27378902 pmcid: 4908129
Worsley, K. J., Taylor, J. E., Tomaiuolo, F. & Lerch, J. Unified univariate and multivariate random field theory. Neuroimage 23, S189–S195 (2004).
pubmed: 15501088

Auteurs

Bruna Bellaver (B)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Graduate Program in Biological Sciences-Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Guilherme Povala (G)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.

Pamela C L Ferreira (PCL)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.

João Pedro Ferrari-Souza (JP)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Graduate Program in Biological Sciences-Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Douglas T Leffa (DT)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.

Firoza Z Lussier (FZ)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.

Andréa L Benedet (AL)

Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Nicholas J Ashton (NJ)

Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.
Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Gallen Triana-Baltzer (G)

Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, USA.

Hartmuth C Kolb (HC)

Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, USA.

Cécile Tissot (C)

Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.

Joseph Therriault (J)

Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.

Stijn Servaes (S)

Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.

Jenna Stevenson (J)

Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.

Nesrine Rahmouni (N)

Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.

Oscar L Lopez (OL)

Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Dana L Tudorascu (DL)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Biostatistics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Victor L Villemagne (VL)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.

Milos D Ikonomovic (MD)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA.

Serge Gauthier (S)

Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.

Eduardo R Zimmer (ER)

Graduate Program in Biological Sciences-Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Brain Institute, PUCRS, Porto Alegre, Brazil.

Henrik Zetterberg (H)

Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
UK Dementia Research Institute at UCL, London, UK.
Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.

Kaj Blennow (K)

Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

Howard J Aizenstein (HJ)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

William E Klunk (WE)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.

Beth E Snitz (BE)

Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Pauline Maki (P)

Department of Psychiatry, University of Illinois, Chicago, IL, USA.

Rebecca C Thurston (RC)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.

Ann D Cohen (AD)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.

Mary Ganguli (M)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.

Thomas K Karikari (TK)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Pedro Rosa-Neto (P)

Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada.

Tharick A Pascoal (TA)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. pascoalt@upmc.edu.
Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. pascoalt@upmc.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH