Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer's disease.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
received:
23
01
2023
accepted:
01
05
2023
medline:
21
7
2023
pubmed:
30
5
2023
entrez:
29
5
2023
Statut:
ppublish
Résumé
An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-β (Aβ)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash Aβ effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of Aβ with tau phosphorylation in CU individuals. We found that Aβ was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast
Identifiants
pubmed: 37248300
doi: 10.1038/s41591-023-02380-x
pii: 10.1038/s41591-023-02380-x
pmc: PMC10353939
doi:
Substances chimiques
Amyloid beta-Peptides
0
Biomarkers
0
tau Proteins
0
APP protein, human
0
MAPT protein, human
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1775-1781Subventions
Organisme : NIA NIH HHS
ID : R01 AG075336
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG052521
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG052528
Pays : United States
Organisme : NIA NIH HHS
ID : R37 AG023651
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG053504
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG066468
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG073267
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG052525
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105647
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG014449
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG025516
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG052446
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG053504
Pays : United States
Organisme : NHLBI NIH HHS
ID : K24 HL123565
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG025204
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2023. The Author(s).
Références
Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).
pubmed: 23332364
pmcid: 3622225
Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 27, 954–963 (2021).
pubmed: 34083813
Milà-Alomà, M. et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease. Nat. Med. 28, 1797–1801 (2022).
pubmed: 35953717
pmcid: 9499867
Hanseeuw, B. J. et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol. 76, 915–924 (2019).
pubmed: 31157827
pmcid: 6547132
Ossenkoppele, R. et al. Accuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA Neurol. 78, 961–971 (2021).
pubmed: 34180956
pmcid: 8240013
Ossenkoppele, R. et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 28, 2381–2387 (2022).
pubmed: 36357681
pmcid: 9671808
Roberts, R. O. et al. Prevalence and outcomes of amyloid positivity among persons without dementia in a longitudinal, population-based setting. JAMA Neurol. 75, 970–979 (2018).
pubmed: 29710225
pmcid: 6142936
Josephs, K. A., Weigand, S. D. & Whitwell, J. L. Characterizing amyloid-positive individuals with normal tau PET levels after 5 years: an ADNI study. Neurology 98, e2282–e2292 (2022).
pubmed: 35314506
pmcid: 9162162
Nordberg, A. Dementia in 2014. Towards early diagnosis in Alzheimer disease. Nat. Rev. Neurol. 11, 69–70 (2015).
pubmed: 25623789
Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).
pubmed: 21514248
pmcid: 3220946
Pike, C. J., Cummings, B. J. & Cotman, C. W. Early association of reactive astrocytes with senile plaques in Alzheimer’s disease. Exp. Neurol. 132, 172–179 (1995).
pubmed: 7789457
Beach, T. G., Walker, R. & McGeer, E. G. Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2, 420–436 (1989).
pubmed: 2531723
Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021).
pubmed: 33589835
pmcid: 8007081
Kumar, A., Fontana, I. C. & Nordberg, A. Reactive astrogliosis: a friend or foe in the pathogenesis of Alzheimer’s disease. J. Neurochem. 164, 309–324 (2023).
pubmed: 34931315
Wruck, W. & Adjaye, J. Meta-analysis of human prefrontal cortex reveals activation of GFAP and decline of synaptic transmission in the aging brain. Acta Neuropathol. Commun. 8, 26 (2020).
pubmed: 32138778
pmcid: 7059712
Garwood, C. J., Pooler, A. M., Atherton, J., Hanger, D. P. & Noble, W. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2, e167 (2011).
pubmed: 21633390
pmcid: 3168992
Mann, C. N. et al. Astrocytic α2-Na
pubmed: 35171651
pmcid: 9161722
Litvinchuk, A. et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron 100, 1337–1353 (2018).
pubmed: 30415998
pmcid: 6309202
de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73, 685–697 (2012).
pubmed: 22365544
pmcid: 3292759
Wang, P. & Ye, Y. Filamentous recombinant human tau activates primary astrocytes via an integrin receptor complex. Nat. Commun. 12, 95 (2021).
pubmed: 33398028
pmcid: 7782792
Benedet, A. L. et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum. JAMA Neurol. 78, 1471–1483 (2021).
pubmed: 34661615
Chatterjee, P. et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl. Psychiatry 11, 27 (2021).
pubmed: 33431793
pmcid: 7801513
Pereira, J. B. et al. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain 144, 3505–3516 (2021).
pubmed: 34259835
pmcid: 8677538
Chatterjee, P. et al. Plasma glial fibrillary acidic protein is associated with 18F-SMBT-1 PET: two putative astrocyte reactivity biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 92, 615–628 (2023).
pubmed: 36776057
pmcid: 10041433
Palmqvist, S. et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 8, 1214 (2017).
pubmed: 29089479
pmcid: 5663717
Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).
pubmed: 1759558
Jack, C. R. Jr et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).
pubmed: 29653606
pmcid: 5958625
Johansson, C. et al. Plasma biomarker profiles in autosomal dominant Alzheimer’s disease. Brain 146, 1132–1140 (2023).
pubmed: 36626935
pmcid: 9976964
Verberk, I. M. W. et al. Serum markers glial fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: a prospective memory clinic-based cohort study. Lancet Healthy Longev. 2, e87–e95 (2021).
pubmed: 36098162
Shen, X.-N. et al. Plasma glial fibrillary acidic protein in the Alzheimer disease continuum: relationship to other biomarkers, differential diagnosis, and prediction of clinical progression. Clin. Chem. 69, 411–421 (2023).
pubmed: 36861369
Buckley, R. F. et al. Sex differences in the association of global amyloid and regional tau deposition measured by positron emission tomography in clinically normal older adults. JAMA Neurol. 76, 542–551 (2019).
pubmed: 30715078
pmcid: 6515599
Palta, P. et al. Sex differences in in vivo tau neuropathology in a multiethnic sample of late middle-aged adults. Neurobiol. Aging 103, 109–116 (2021).
pubmed: 33894641
pmcid: 8178209
Tsiknia, A. A. et al. Sex differences in plasma p-tau181 associations with Alzheimer’s disease biomarkers, cognitive decline, and clinical progression. Mol. Psychiatry 27, 4314–4322 (2022).
pubmed: 35768637
pmcid: 9718670
van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).
pubmed: 36449413
Ganguli, M. et al. Prevalence of mild cognitive impairment by multiple classifications: the Monongahela-Youghiogheny Healthy Aging Team (MYHAT) project. Am. J. Geriatr. Psychiatry 18, 674–683 (2010).
pubmed: 20220597
pmcid: 2906673
Bambs, C. et al. Low prevalence of “ideal cardiovascular health” in a community-based population: the heart strategies concentrating on risk evaluation (Heart SCORE) study. Circulation 123, 850–857 (2011).
pubmed: 21321154
pmcid: 3061396
Cohen, A. D. et al. Connectomics in brain aging and dementia—the background and design of a study of a connectome related to human disease. Front. Aging Neurosci. 13, 669490 (2021).
pubmed: 34690734
pmcid: 8530182
Aizenstein, H. J. et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol. 65, 1509–1517 (2008).
pubmed: 19001171
pmcid: 2636844
Thurston, R. C. et al. Menopausal vasomotor symptoms and white matter hyperintensities in midlife women. Neurology 100, e133–e141 (2023).
pubmed: 36224031
pmcid: 9841446
Karikari, T. K. et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 19, 422–433 (2020).
pubmed: 32333900
Ashton, N. J. et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 141, 709–724 (2021).
pubmed: 33585983
pmcid: 8043944
Triana-Baltzer, G. et al. Development and validation of a high-sensitivity assay for measuring p217+tau in plasma. Alzheimers Dement. (Amst.) 13, e12204 (2021).
pubmed: 34095436
Ossenkoppele, R. et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 313, 1939–1949 (2015).
pubmed: 25988463
pmcid: 4517678
Jack, C. R. Jr. et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 13, 205–216 (2017).
pubmed: 27697430
Gräsbeck, R. The evolution of the reference value concept. Clin. Chem. Lab. Med. 42, 692–697 (2004).
pubmed: 15327001
Jensen, C. S. et al. Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Exp. Gerontol. 121, 91–98 (2019).
pubmed: 30980923
Therriault, J. et al. Determining amyloid-β positivity using (18)F-AZD4694 PET imaging. J. Nucl. Med. 62, 247–252 (2021).
pubmed: 32737243
Pascoal, T. A. et al. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain 143, 2818–2830 (2020).
pubmed: 32671408
Cohen, A. D. et al. Classification of amyloid-positivity in controls: comparison of visual read and quantitative approaches. Neuroimage 71, 207–215 (2013).
pubmed: 23353602
Mathotaarachchi, S. et al. VoxelStats: a MATLAB package for multi-modal voxel-wise brain image analysis. Front. Neuroinform. 10, 20 (2016).
pubmed: 27378902
pmcid: 4908129
Worsley, K. J., Taylor, J. E., Tomaiuolo, F. & Lerch, J. Unified univariate and multivariate random field theory. Neuroimage 23, S189–S195 (2004).
pubmed: 15501088