Safe and just Earth system boundaries.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
23
06
2022
accepted:
14
04
2023
medline:
7
7
2023
pubmed:
1
6
2023
entrez:
31
5
2023
Statut:
ppublish
Résumé
The stability and resilience of the Earth system and human well-being are inseparably linked
Identifiants
pubmed: 37258676
doi: 10.1038/s41586-023-06083-8
pii: 10.1038/s41586-023-06083-8
pmc: PMC10322705
doi:
Substances chimiques
Aerosols
0
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
102-111Informations de copyright
© 2023. The Author(s).
Références
IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo https://doi.org/10.5281/zenodo.5657041 (2019).
Folke, C. et al. Our future in the Anthropocene biosphere. Ambio 50, 834–869 (2021).
pubmed: 33715097
pmcid: 7955950
doi: 10.1007/s13280-021-01544-8
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Rockström, J. et al. Identifying a safe and just corridor for people and the planet. Earth’s Future 9, e2020EF001866 (2021).
doi: 10.1029/2020EF001866
Rockström, J. et al. Stockholm to Stockholm: achieving a safe Earth requires goals that incorporate a just approach. One Earth 4, 1209–1211 (2021).
doi: 10.1016/j.oneear.2021.08.012
Zalasiewicz, J. et al. The Working Group on the Anthropocene: summary of evidence and interim recommendations. Anthropocene 19, 55–60 (2017).
doi: 10.1016/j.ancene.2017.09.001
Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).
pubmed: 30082409
pmcid: 6099852
doi: 10.1073/pnas.1810141115
Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).
pubmed: 32366654
pmcid: 7260949
doi: 10.1073/pnas.1910114117
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
UNEP Global Environment Outlook—GEO-6: Healthy Planet, Healthy People (Cambridge Univ. Press, 2019); https://doi.org/10.1017/9781108627146 .
Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).
pubmed: 31776487
doi: 10.1038/d41586-019-03595-0
UNEP Global Environment Outlook—GEO-6: Technical Summary (Cambridge Univ. Press, 2021); https://wedocs.unep.org/20.500.11822/32024 .
Biermann, F., Dirth, E. & Kalfagianni, A. Planetary justice as a challenge for earth system governance: editorial. Earth System Governance 6, 100085 (2020).
doi: 10.1016/j.esg.2020.100085
Nakicenovic, N., Rockström, J., Gaffney, O. & Zimm, C. Global Commons in the Anthropocene: World Development on a Stable and Resilient Planet. IIASA Working Paper (IIASA, 2016); http://pure.iiasa.ac.at/14003/ .
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
pubmed: 18258748
pmcid: 2538841
doi: 10.1073/pnas.0705414105
Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
pubmed: 36074831
doi: 10.1126/science.abn7950
Burke, A. & Fishel, S. in Non-Human Nature in World Politics: Theory and Practice (eds Pereira, J. C. & Saramago, A.) 33–52 (Springer International Publishing, 2020).
Meyer, L. Intergenerational justice. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Stanford, 2021); https://plato.stanford.edu/archives/sum2021/entries/justice-intergenerational/ .
Blake, M. & Smith, P. T. International distributive justice. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Stanford, 2022); https://plato.stanford.edu/archives/sum2022/entries/international-justice/ .
Norlock, K. Feminist ethics. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Stanford, 2019); https://plato.stanford.edu/archives/sum2019/entries/feminism-ethics/ .
Gupta, J. et al. Reconciling safe planetary targets and planetary justice: why should social scientists engage with planetary targets? Earth System Governance 10, 100122 (2021).
doi: 10.1016/j.esg.2021.100122
Gupta, J. et al. Earth system justice needed to identify and live within Earth system boundaries. Nat. Sustain. https://doi.org/10.1038/s41893-023-01064-1 (2023).
doi: 10.1038/s41893-023-01064-1
O’Neill, B. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 2411–2538 (Cambridge Univ. Press, 2022).
Gupta, J. & Schmeier, S. Future proofing the principle of no significant harm. Int. Environ. Agreem. 20, 731–747 (2020).
doi: 10.1007/s10784-020-09515-2
Spijkers, O. The no significant harm principle and the human right to water. Int. Environ. Agreem. 20, 699–712 (2020).
doi: 10.1007/s10784-020-09506-3
Rammelt, C. et al. Impacts of meeting minimum access on critical earth systems amidst the Great Inequality. Nat. Sustain. 6, 212–221 (2022).
doi: 10.1038/s41893-022-00995-5
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
pubmed: 25592418
doi: 10.1126/science.1259855
Raworth, K. A doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet Health 1, e48–e49 (2017).
pubmed: 29851576
doi: 10.1016/S2542-5196(17)30028-1
UN GA. Transforming Our World: The 2030 Agenda for Sustainable Development General Assembly resolution 70/1 vol. A/RES/70/1 (United Nations, 2015).
van Vuuren, D. P. et al. Defining a sustainable development target space for 2030 and 2050. One Earth 5, 142–156 (2022).
doi: 10.1016/j.oneear.2022.01.003
Hickel, J. Is it possible to achieve a good life for all within planetary boundaries? Third World Q. 40, 18–35 (2019).
doi: 10.1080/01436597.2018.1535895
O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).
doi: 10.1038/s41893-018-0021-4
Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).
doi: 10.1016/j.gloenvcha.2014.07.009
Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).
doi: 10.1016/j.oneear.2020.02.009
Zipper, S. C. et al. Integrating the water planetary boundary with water management from local to global scales. Earth’s Future 8, e2019EF001377 (2020).
pubmed: 32715010
pmcid: 7375053
doi: 10.1029/2019EF001377
Heistermann, M. HESS opinions: a planetary boundary on freshwater use is misleading. Hydrol. Earth Syst. Sci. 21, 3455–3461 (2017).
doi: 10.5194/hess-21-3455-2017
Biermann, F. & Kim, R. E. The boundaries of the planetary boundary framework: a critical appraisal of approaches to define a ‘safe operating space’ for humanity. Annu. Rev. Environ. Resour. 45, 497–521 (2020).
doi: 10.1146/annurev-environ-012320-080337
Wang-Erlandsson, L. et al. A planetary boundary for green water. Nat. Rev. Earth Environ. 3, 380–392 (2022).
doi: 10.1038/s43017-022-00287-8
Rijsberman, F. R. & Swart, R. J. (eds) Targets and Indicators of Climate Change. Report of Working Group II of the Advisory Group on Greenhouse Gases (Stockholm Environmental Institute, 1990).
Parmesan, C. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 197–377 (Cambridge Univ. Press, 2022).
Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. https://doi.org/10.1038/s41893-023-01132-6 (2023).
doi: 10.1101/2022.06.07.495131
Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).
pubmed: 33731930
doi: 10.1038/s41586-021-03371-z
Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).
doi: 10.1016/j.gloenvcha.2021.102368
Vira, B. & Kontoleon, A. in Biodiversity Conservation and Poverty Alleviation: Exploring the Evidence for a Link (eds Roe, D. et al.) 52–84 (Wiley, 2012).
Alves, R. R. N. & Rosa, I. M. L. Biodiversity, traditional medicine and public health: where do they meet? J. Ethnobiol. Ethnomed. 3, 14 (2007).
pubmed: 17376227
pmcid: 1847427
doi: 10.1186/1746-4269-3-14
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).
pubmed: 28569811
pmcid: 5460751
doi: 10.1038/nature22899
Ellis, E. C. & Mehrabi, Z. Half Earth: promises, pitfalls, and prospects of dedicating half of Earth’s land to conservation. Curr. Opin. Environ. Sustain. 38, 22–30 (2019).
doi: 10.1016/j.cosust.2019.04.008
Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2020).
Rocha, J. C. Ecosystems are showing symptoms of resilience loss. Environ. Res. Lett. 17, 065013 (2022).
doi: 10.1088/1748-9326/ac73a8
Obura, D. O. et al. Integrate biodiversity targets from local to global levels. Science 373, 746–748 (2021).
pubmed: 34385386
doi: 10.1126/science.abh2234
Pascual, U. et al. Biodiversity and the challenge of pluralism. Nat. Sustain. 4, 567–572 (2021).
doi: 10.1038/s41893-021-00694-7
Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 70, 330–342 (2020).
pubmed: 32284631
pmcid: 7138689
doi: 10.1093/biosci/biaa002
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 94, 849–873 (2019).
pubmed: 30467930
doi: 10.1111/brv.12480
Dodds, W. K., Perkin, J. S. & Gerken, J. E. Human impact on freshwater ecosystem services: a global perspective. Environ. Sci. Technol. 47, 9061–9068 (2013).
pubmed: 23885808
doi: 10.1021/es4021052
Funge-Smith, S. & Bennett, A. A fresh look at inland fisheries and their role in food security and livelihoods. Fish Fish 20, 1176–1195 (2019).
doi: 10.1111/faf.12403
Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170 (2010).
doi: 10.1111/j.1365-2427.2009.02204.x
Liu, X. et al. Environmental flow requirements largely reshape global surface water scarcity assessment. Environ. Res. Lett. 16, 104029 (2021).
doi: 10.1088/1748-9326/ac27cb
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).
pubmed: 22393438
pmcid: 3290560
doi: 10.1371/journal.pone.0032688
Richter, B. D., Davis, M. M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 28, 1312–1321 (2012).
doi: 10.1002/rra.1511
Rolls, R. J. & Arthington, A. H. How do low magnitudes of hydrologic alteration impact riverine fish populations and assemblage characteristics? Ecol. Indic. 39, 179–188 (2014).
doi: 10.1016/j.ecolind.2013.12.017
Carlisle, D. M., Wolock, D. M. & Meador, M. R. Alteration of streamflow magnitudes and potential ecological consequences: a multiregional assessment. Front. Ecol. Environ. 9, 264–270 (2010).
doi: 10.1890/100053
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).
pubmed: 26933676
pmcid: 4758739
doi: 10.1126/sciadv.1500323
Minderhoud, P. S. J., Middelkoop, H., Erkens, G. & Stouthamer, E. Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environ. Res. Commun. 2, 011005 (2020).
doi: 10.1088/2515-7620/ab5e21
Kath, J., Boulton, A. J., Harrison, E. T. & Dyer, F. J. A conceptual framework for ecological responses to groundwater regime alteration (FERGRA). Ecohydrol. 11, e2010 (2018).
doi: 10.1002/eco.2010
Döll, P., Fritsche, M., Eicker, A. & Müller Schmied, H. Seasonal water storage variations as impacted by water abstractions: comparing the output of a global hydrological model with GRACE and GPS observations. Surv. Geophys. 35, 1311–1331 (2014).
doi: 10.1007/s10712-014-9282-2
Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).
pubmed: 22645352
pmcid: 3386121
doi: 10.1073/pnas.1200311109
Prüss-Ustün, A. et al. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: an updated analysis with a focus on low- and middle-income countries. Int. J. Hyg. Environ. Health 222, 765–777 (2019).
pubmed: 31088724
pmcid: 6593152
doi: 10.1016/j.ijheh.2019.05.004
UNESCO WWAP The United Nations World Water Development Report 3: Water in a Changing World (UNESCO and Earthscan, 2009); https://unesdoc.unesco.org/ark:/48223/pf0000181993 .
WHO Guidelines for Drinking-water Quality 4th edn (World Health Organization, 2022); https://www.who.int/publications/i/item/9789240045064 .
Rockström, J., Lannerstad, M. & Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl Acad. Sci. USA 104, 6253–6260 (2007).
pubmed: 17404216
pmcid: 1851042
doi: 10.1073/pnas.0605739104
Aldaya, M. M., Allan, J. A. & Hoekstra, A. Y. Strategic importance of green water in international crop trade. Ecol. Econ. 69, 887–894 (2010).
doi: 10.1016/j.ecolecon.2009.11.001
Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).
pubmed: 36261550
doi: 10.1038/s41586-022-05158-2
Zhang, X. et al. Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth 4, 1262–1277 (2021).
doi: 10.1016/j.oneear.2021.08.015
Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).
pubmed: 30305731
doi: 10.1038/s41586-018-0594-0
Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycles 34, e2018GB006060 (2020).
doi: 10.1029/2018GB006060
Cordell, D. & White, S. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188 (2014).
doi: 10.1146/annurev-environ-010213-113300
Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM
pubmed: 34735244
doi: 10.1126/science.abf8623
Ward, M. H. et al. Drinking water nitrate and human health: an updated review. Int. J. Environ. Res. Public Health 15, 1557 (2018).
pubmed: 30041450
pmcid: 6068531
doi: 10.3390/ijerph15071557
Tirado, R. & Allsopp, M. Phosphorus in Agriculture: Problems and Solutions. Technical report (review) (Greenpeace, 2012); https://www.greenpeace.to/greenpeace/wp-content/uploads/2012/06/tirado-and-allsopp-2012-phosphorus-in-agriculture-technical-report-02-2012.pdf .
Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3, 660–665 (2013).
doi: 10.1038/nclimate1857
Krishnamohan, K. S. & Bala, G. Sensitivity of tropical monsoon precipitation to the latitude of stratospheric aerosol injections. Clim. Dyn. 59, 151–168 (2022).
doi: 10.1007/s00382-021-06121-z
Liu, F. et al. Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep. 6, 24331 (2016).
pubmed: 27063141
pmcid: 4827032
doi: 10.1038/srep24331
Zuo, M., Zhou, T. & Man, W. Hydroclimate responses over global monsoon regions following volcanic eruptions at different latitudes. J. Clim. 32, 4367–4385 (2019).
doi: 10.1175/JCLI-D-18-0707.1
Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (Cambridge Univ. Press, 2021).
Visioni, D. et al. Seasonally modulated stratospheric aerosol geoengineering alters the climate outcomes. Geophys. Res. Lett. 47, e2020GL088337 (2020).
doi: 10.1029/2020GL088337
Zhao, M., Cao, L., Bala, G. & Duan, L. Climate response to latitudinal and altitudinal distribution of stratospheric sulfate aerosols. J. Geophys. Res. 126, e2021JD035379 (2021).
doi: 10.1029/2021JD035379
Vogel, A. et al. Uncertainty in aerosol optical depth from modern aerosol‐climate models, reanalyses, and satellite products. J. Geophys. Res. 127, e2021JD035483 (2022).
doi: 10.1029/2021JD035483
WHO Global Air Quality Guidelines: Particulate Matter (PM
Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).
pubmed: 28408086
pmcid: 5439030
doi: 10.1016/S0140-6736(17)30505-6
EPA. Review of the national ambient air quality standards for particulate matter. Environmental Protection Agency. 40 CFR Part 50. Fed. Regis. Rules Regul. 85, 82684–82748 (2020).
European Commission. Air quality standards https://ec.europa.eu/environment/air/quality/standards.htm (2020).
Shaddick, G. et al. Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment. Environ. Sci. Technol. 52, 9069–9078 (2018).
pubmed: 29957991
doi: 10.1021/acs.est.8b02864
Rao, N. D., Kiesewetter, G., Min, J., Pachauri, S. & Wagner, F. Household contributions to and impacts from air pollution in India. Nat. Sustain. 4, 859–867 (2021).
doi: 10.1038/s41893-021-00744-0
Rao, S. et al. Future air pollution in the shared socio-economic pathways. Glob. Environ. Change 42, 346–358 (2017).
doi: 10.1016/j.gloenvcha.2016.05.012
van Donkelaar, A., Martin, R. V. & Park, R. J. Estimating ground-level PM
doi: 10.1029/2005JD006996
Gupta, P. et al. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 40, 5880–5892 (2006).
doi: 10.1016/j.atmosenv.2006.03.016
Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).
pubmed: 35038861
pmcid: 8811958
doi: 10.1021/acs.est.1c04158
Naidu, R. et al. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Environ. Int. 156, 106616 (2021).
pubmed: 33989840
doi: 10.1016/j.envint.2021.106616
Bai, X. et al. How to stop cities and companies causing planetary harm. Nature 609, 463–466 (2022).
pubmed: 36097057
doi: 10.1038/d41586-022-02894-3
Companies taking action. Science Based Targets https://sciencebasedtargets.org/companies-taking-action (2022).
Technical guidance for step 1: assess and step 2: prioritize. Draft for public comment (September 2022). Science Based Targets Network https://sciencebasedtargetsnetwork.org/wp-content/uploads/2022/09/Technical-Guidance-for-Step-1-Assess-and-Step-2-Prioritize.pdf (2022).
Resources for public consultation on technical guidance for companies. Science Based Targets Network https://sciencebasedtargetsnetwork.org/resources/public-consultation-resources/ (2022).
Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
pubmed: 19779433
doi: 10.1038/461472a
de Vries, W., Schulte-Uebbing, L., Kros, H., Voogd, J. C. & Louwagie, G. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total Environ. 786, 147283 (2021).
pubmed: 33958210
doi: 10.1016/j.scitotenv.2021.147283
Schulte-Uebbing, L. & de Vries, W. Reconciling food production and environmental boundaries for nitrogen in the European Union. Sci. Total Environ. 786, 147427 (2021).
doi: 10.1016/j.scitotenv.2021.147427
Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).
pubmed: 37117677
doi: 10.1038/s43016-021-00318-5
Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).
pubmed: 34759364
doi: 10.1038/s41586-021-03984-4
Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020).
pubmed: 32606396
pmcid: 7327079
doi: 10.1038/s41597-020-0530-7
Biggs, R. et al. in Encyclopedia of Theoretical Ecology (eds Hastings, A. & Gross, L.) 609–617 (Univ. of California Press, 2012).
Reisinger, A. et al. The Concept of Risk in the IPCC Sixth Assessment Report: a Summary of Cross-working Group Discussions (IPCC, 2020); https://www.ipcc.ch/site/assets/uploads/2021/02/Risk-guidance-FINAL_15Feb2021.pdf .
Mastrandrea, M. D. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (IPCC, 2010); https://www.ipcc.ch/site/assets/uploads/2017/08/AR5_Uncertainty_Guidance_Note.pdf .
Gampfer, R. Do individuals care about fairness in burden sharing for climate change mitigation? Evidence from a lab experiment. Clim. Change 124, 65–77 (2014).
doi: 10.1007/s10584-014-1091-6
Marotzke, J., Semmann, D. & Milinski, M. The economic interaction between climate change mitigation, climate migration and poverty. Nat. Clim. Change 10, 518–525 (2020).
doi: 10.1038/s41558-020-0783-3
Owusu, K. A., Kulesz, M. M. & Merico, A. Extraction behaviour and income inequalities resulting from a common pool resource exploitation. Sustain. Sci. Pract. Policy 11, 536 (2019).
Liebrand, W. B. G., Jansen, R. W. T. L., Rijken, V. M. & Suhre, C. J. M. Might over morality: social values and the perception of other players in experimental games. J. Exp. Soc. Psychol. 22, 203–215 (1986).
doi: 10.1016/0022-1031(86)90024-7
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Strauss, B. H., Kulp, S. A., Rasmussen, D. J. & Levermann, A. Unprecedented threats to cities from multi-century sea level rise. Environ. Res. Lett. 16, 114015 (2021).
doi: 10.1088/1748-9326/ac2e6b
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).
Rasmussen, D. J. et al. Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries. Environ. Res. Lett. 13, 034040 (2018).
doi: 10.1088/1748-9326/aaac87
Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).
pubmed: 23858443
pmcid: 3752235
doi: 10.1073/pnas.1219414110
Davies-Jones, R. An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Weather Rev. 136, 2764–2785 (2008).
doi: 10.1175/2007MWR2224.1
Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L. & Fu, C. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Sci. Data 8, 293 (2021).
pubmed: 34737356
pmcid: 8569144
doi: 10.1038/s41597-021-01079-3
CIESIN. Gridded population of the world, version 4 (GPWv4): population count adjusted to match 2015 revision of UN WPP country totals, revision 11. Center for International Earth Science Information Network, Columbia Univ. https://doi.org/10.7927/H4PN93PB (2018).
Im, E.-S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).
pubmed: 28782036
pmcid: 5540239
doi: 10.1126/sciadv.1603322
Shaw, R. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 1457–1579 (Cambridge Univ. Press, 2022).
Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth Syst. Monit. 9, 927–953 (2017).
CIESIN-CIDR. Low elevation coastal zone (LECZ) urban-rural population and land area estimates, version 3. Columbia Univ. and CUNY Institute for Demographic Research, City Univ. of New York https://doi.org/10.7927/d1x1-d702 (2021).
van Donkelaar, A. et al. Monthly global estimates of fine particulate matter and their uncertainty. Environ. Sci. Technol. 55, 15287–15300 (2021).
pubmed: 34724610
doi: 10.1021/acs.est.1c05309
Beusen, A. H. W., Van Beek, L. P. H., Bouwman, A. F., Mogollón, J. M. & Middelburg, J. J. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water—description of IMAGE–GNM and analysis of performance. Geosci. Model Dev. 8, 4045–4067 (2015).
doi: 10.5194/gmd-8-4045-2015
Beusen, A. H. W. et al. Exploring river nitrogen and phosphorus loading and export to global coastal waters in the shared socio-economic pathways. Glob. Environ. Change 72, 102426 (2022).
doi: 10.1016/j.gloenvcha.2021.102426
Mekonnen, M. M. & Hoekstra, A. Y. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high‐resolution global study. Water Resour. Res. 54, 345–358 (2018).
doi: 10.1002/2017WR020448
Fekete, B. M., Vörösmarty, C. J. & Lammers, R. B. Scaling gridded river networks for macroscale hydrology: development, analysis, and control of error. Water Resour. Res. 37, 1955–1967 (2001).
doi: 10.1029/2001WR900024
Wisser, D., Fekete, B. M., Vörösmarty, C. J. & Schumann, A. H. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network Hydrology (GTN-H). Hydrol. Earth Syst. Sci. 14, 1–24 (2010).
doi: 10.5194/hess-14-1-2010