Safe and just Earth system boundaries.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 23 06 2022
accepted: 14 04 2023
medline: 7 7 2023
pubmed: 1 6 2023
entrez: 31 5 2023
Statut: ppublish

Résumé

The stability and resilience of the Earth system and human well-being are inseparably linked

Identifiants

pubmed: 37258676
doi: 10.1038/s41586-023-06083-8
pii: 10.1038/s41586-023-06083-8
pmc: PMC10322705
doi:

Substances chimiques

Aerosols 0
Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

102-111

Informations de copyright

© 2023. The Author(s).

Références

IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo https://doi.org/10.5281/zenodo.5657041 (2019).
Folke, C. et al. Our future in the Anthropocene biosphere. Ambio 50, 834–869 (2021).
pubmed: 33715097 pmcid: 7955950 doi: 10.1007/s13280-021-01544-8
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Rockström, J. et al. Identifying a safe and just corridor for people and the planet. Earth’s Future 9, e2020EF001866 (2021).
doi: 10.1029/2020EF001866
Rockström, J. et al. Stockholm to Stockholm: achieving a safe Earth requires goals that incorporate a just approach. One Earth 4, 1209–1211 (2021).
doi: 10.1016/j.oneear.2021.08.012
Zalasiewicz, J. et al. The Working Group on the Anthropocene: summary of evidence and interim recommendations. Anthropocene 19, 55–60 (2017).
doi: 10.1016/j.ancene.2017.09.001
Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).
pubmed: 30082409 pmcid: 6099852 doi: 10.1073/pnas.1810141115
Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).
pubmed: 32366654 pmcid: 7260949 doi: 10.1073/pnas.1910114117
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
UNEP Global Environment Outlook—GEO-6: Healthy Planet, Healthy People (Cambridge Univ. Press, 2019); https://doi.org/10.1017/9781108627146 .
Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).
pubmed: 31776487 doi: 10.1038/d41586-019-03595-0
UNEP Global Environment Outlook—GEO-6: Technical Summary (Cambridge Univ. Press, 2021); https://wedocs.unep.org/20.500.11822/32024 .
Biermann, F., Dirth, E. & Kalfagianni, A. Planetary justice as a challenge for earth system governance: editorial. Earth System Governance 6, 100085 (2020).
doi: 10.1016/j.esg.2020.100085
Nakicenovic, N., Rockström, J., Gaffney, O. & Zimm, C. Global Commons in the Anthropocene: World Development on a Stable and Resilient Planet. IIASA Working Paper (IIASA, 2016); http://pure.iiasa.ac.at/14003/ .
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
pubmed: 18258748 pmcid: 2538841 doi: 10.1073/pnas.0705414105
Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
pubmed: 36074831 doi: 10.1126/science.abn7950
Burke, A. & Fishel, S. in Non-Human Nature in World Politics: Theory and Practice (eds Pereira, J. C. & Saramago, A.) 33–52 (Springer International Publishing, 2020).
Meyer, L. Intergenerational justice. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Stanford, 2021); https://plato.stanford.edu/archives/sum2021/entries/justice-intergenerational/ .
Blake, M. & Smith, P. T. International distributive justice. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Stanford, 2022); https://plato.stanford.edu/archives/sum2022/entries/international-justice/ .
Norlock, K. Feminist ethics. In The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Stanford, 2019); https://plato.stanford.edu/archives/sum2019/entries/feminism-ethics/ .
Gupta, J. et al. Reconciling safe planetary targets and planetary justice: why should social scientists engage with planetary targets? Earth System Governance 10, 100122 (2021).
doi: 10.1016/j.esg.2021.100122
Gupta, J. et al. Earth system justice needed to identify and live within Earth system boundaries. Nat. Sustain. https://doi.org/10.1038/s41893-023-01064-1 (2023).
doi: 10.1038/s41893-023-01064-1
O’Neill, B. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 2411–2538 (Cambridge Univ. Press, 2022).
Gupta, J. & Schmeier, S. Future proofing the principle of no significant harm. Int. Environ. Agreem. 20, 731–747 (2020).
doi: 10.1007/s10784-020-09515-2
Spijkers, O. The no significant harm principle and the human right to water. Int. Environ. Agreem. 20, 699–712 (2020).
doi: 10.1007/s10784-020-09506-3
Rammelt, C. et al. Impacts of meeting minimum access on critical earth systems amidst the Great Inequality. Nat. Sustain. 6, 212–221 (2022).
doi: 10.1038/s41893-022-00995-5
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
pubmed: 25592418 doi: 10.1126/science.1259855
Raworth, K. A doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet Health 1, e48–e49 (2017).
pubmed: 29851576 doi: 10.1016/S2542-5196(17)30028-1
UN GA. Transforming Our World: The 2030 Agenda for Sustainable Development General Assembly resolution 70/1 vol. A/RES/70/1 (United Nations, 2015).
van Vuuren, D. P. et al. Defining a sustainable development target space for 2030 and 2050. One Earth 5, 142–156 (2022).
doi: 10.1016/j.oneear.2022.01.003
Hickel, J. Is it possible to achieve a good life for all within planetary boundaries? Third World Q. 40, 18–35 (2019).
doi: 10.1080/01436597.2018.1535895
O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).
doi: 10.1038/s41893-018-0021-4
Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).
doi: 10.1016/j.gloenvcha.2014.07.009
Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).
doi: 10.1016/j.oneear.2020.02.009
Zipper, S. C. et al. Integrating the water planetary boundary with water management from local to global scales. Earth’s Future 8, e2019EF001377 (2020).
pubmed: 32715010 pmcid: 7375053 doi: 10.1029/2019EF001377
Heistermann, M. HESS opinions: a planetary boundary on freshwater use is misleading. Hydrol. Earth Syst. Sci. 21, 3455–3461 (2017).
doi: 10.5194/hess-21-3455-2017
Biermann, F. & Kim, R. E. The boundaries of the planetary boundary framework: a critical appraisal of approaches to define a ‘safe operating space’ for humanity. Annu. Rev. Environ. Resour. 45, 497–521 (2020).
doi: 10.1146/annurev-environ-012320-080337
Wang-Erlandsson, L. et al. A planetary boundary for green water. Nat. Rev. Earth Environ. 3, 380–392 (2022).
doi: 10.1038/s43017-022-00287-8
Rijsberman, F. R. & Swart, R. J. (eds) Targets and Indicators of Climate Change. Report of Working Group II of the Advisory Group on Greenhouse Gases (Stockholm Environmental Institute, 1990).
Parmesan, C. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 197–377 (Cambridge Univ. Press, 2022).
Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain.  https://doi.org/10.1038/s41893-023-01132-6  (2023).
doi: 10.1101/2022.06.07.495131
Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).
pubmed: 33731930 doi: 10.1038/s41586-021-03371-z
Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).
doi: 10.1016/j.gloenvcha.2021.102368
Vira, B. & Kontoleon, A. in Biodiversity Conservation and Poverty Alleviation: Exploring the Evidence for a Link (eds Roe, D. et al.) 52–84 (Wiley, 2012).
Alves, R. R. N. & Rosa, I. M. L. Biodiversity, traditional medicine and public health: where do they meet? J. Ethnobiol. Ethnomed. 3, 14 (2007).
pubmed: 17376227 pmcid: 1847427 doi: 10.1186/1746-4269-3-14
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).
pubmed: 28569811 pmcid: 5460751 doi: 10.1038/nature22899
Ellis, E. C. & Mehrabi, Z. Half Earth: promises, pitfalls, and prospects of dedicating half of Earth’s land to conservation. Curr. Opin. Environ. Sustain. 38, 22–30 (2019).
doi: 10.1016/j.cosust.2019.04.008
Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2020).
Rocha, J. C. Ecosystems are showing symptoms of resilience loss. Environ. Res. Lett. 17, 065013 (2022).
doi: 10.1088/1748-9326/ac73a8
Obura, D. O. et al. Integrate biodiversity targets from local to global levels. Science 373, 746–748 (2021).
pubmed: 34385386 doi: 10.1126/science.abh2234
Pascual, U. et al. Biodiversity and the challenge of pluralism. Nat. Sustain. 4, 567–572 (2021).
doi: 10.1038/s41893-021-00694-7
Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 70, 330–342 (2020).
pubmed: 32284631 pmcid: 7138689 doi: 10.1093/biosci/biaa002
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 94, 849–873 (2019).
pubmed: 30467930 doi: 10.1111/brv.12480
Dodds, W. K., Perkin, J. S. & Gerken, J. E. Human impact on freshwater ecosystem services: a global perspective. Environ. Sci. Technol. 47, 9061–9068 (2013).
pubmed: 23885808 doi: 10.1021/es4021052
Funge-Smith, S. & Bennett, A. A fresh look at inland fisheries and their role in food security and livelihoods. Fish Fish 20, 1176–1195 (2019).
doi: 10.1111/faf.12403
Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170 (2010).
doi: 10.1111/j.1365-2427.2009.02204.x
Liu, X. et al. Environmental flow requirements largely reshape global surface water scarcity assessment. Environ. Res. Lett. 16, 104029 (2021).
doi: 10.1088/1748-9326/ac27cb
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).
pubmed: 22393438 pmcid: 3290560 doi: 10.1371/journal.pone.0032688
Richter, B. D., Davis, M. M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 28, 1312–1321 (2012).
doi: 10.1002/rra.1511
Rolls, R. J. & Arthington, A. H. How do low magnitudes of hydrologic alteration impact riverine fish populations and assemblage characteristics? Ecol. Indic. 39, 179–188 (2014).
doi: 10.1016/j.ecolind.2013.12.017
Carlisle, D. M., Wolock, D. M. & Meador, M. R. Alteration of streamflow magnitudes and potential ecological consequences: a multiregional assessment. Front. Ecol. Environ. 9, 264–270 (2010).
doi: 10.1890/100053
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).
pubmed: 26933676 pmcid: 4758739 doi: 10.1126/sciadv.1500323
Minderhoud, P. S. J., Middelkoop, H., Erkens, G. & Stouthamer, E. Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environ. Res. Commun. 2, 011005 (2020).
doi: 10.1088/2515-7620/ab5e21
Kath, J., Boulton, A. J., Harrison, E. T. & Dyer, F. J. A conceptual framework for ecological responses to groundwater regime alteration (FERGRA). Ecohydrol. 11, e2010 (2018).
doi: 10.1002/eco.2010
Döll, P., Fritsche, M., Eicker, A. & Müller Schmied, H. Seasonal water storage variations as impacted by water abstractions: comparing the output of a global hydrological model with GRACE and GPS observations. Surv. Geophys. 35, 1311–1331 (2014).
doi: 10.1007/s10712-014-9282-2
Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).
pubmed: 22645352 pmcid: 3386121 doi: 10.1073/pnas.1200311109
Prüss-Ustün, A. et al. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: an updated analysis with a focus on low- and middle-income countries. Int. J. Hyg. Environ. Health 222, 765–777 (2019).
pubmed: 31088724 pmcid: 6593152 doi: 10.1016/j.ijheh.2019.05.004
UNESCO WWAP The United Nations World Water Development Report 3: Water in a Changing World (UNESCO and Earthscan, 2009); https://unesdoc.unesco.org/ark:/48223/pf0000181993 .
WHO Guidelines for Drinking-water Quality 4th edn (World Health Organization, 2022); https://www.who.int/publications/i/item/9789240045064 .
Rockström, J., Lannerstad, M. & Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl Acad. Sci. USA 104, 6253–6260 (2007).
pubmed: 17404216 pmcid: 1851042 doi: 10.1073/pnas.0605739104
Aldaya, M. M., Allan, J. A. & Hoekstra, A. Y. Strategic importance of green water in international crop trade. Ecol. Econ. 69, 887–894 (2010).
doi: 10.1016/j.ecolecon.2009.11.001
Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).
pubmed: 36261550 doi: 10.1038/s41586-022-05158-2
Zhang, X. et al. Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth 4, 1262–1277 (2021).
doi: 10.1016/j.oneear.2021.08.015
Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).
pubmed: 30305731 doi: 10.1038/s41586-018-0594-0
Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycles 34, e2018GB006060 (2020).
doi: 10.1029/2018GB006060
Cordell, D. & White, S. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188 (2014).
doi: 10.1146/annurev-environ-010213-113300
Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM
pubmed: 34735244 doi: 10.1126/science.abf8623
Ward, M. H. et al. Drinking water nitrate and human health: an updated review. Int. J. Environ. Res. Public Health 15, 1557 (2018).
pubmed: 30041450 pmcid: 6068531 doi: 10.3390/ijerph15071557
Tirado, R. & Allsopp, M. Phosphorus in Agriculture: Problems and Solutions. Technical report (review) (Greenpeace, 2012); https://www.greenpeace.to/greenpeace/wp-content/uploads/2012/06/tirado-and-allsopp-2012-phosphorus-in-agriculture-technical-report-02-2012.pdf .
Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3, 660–665 (2013).
doi: 10.1038/nclimate1857
Krishnamohan, K. S. & Bala, G. Sensitivity of tropical monsoon precipitation to the latitude of stratospheric aerosol injections. Clim. Dyn. 59, 151–168 (2022).
doi: 10.1007/s00382-021-06121-z
Liu, F. et al. Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep. 6, 24331 (2016).
pubmed: 27063141 pmcid: 4827032 doi: 10.1038/srep24331
Zuo, M., Zhou, T. & Man, W. Hydroclimate responses over global monsoon regions following volcanic eruptions at different latitudes. J. Clim. 32, 4367–4385 (2019).
doi: 10.1175/JCLI-D-18-0707.1
Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (Cambridge Univ. Press, 2021).
Visioni, D. et al. Seasonally modulated stratospheric aerosol geoengineering alters the climate outcomes. Geophys. Res. Lett. 47, e2020GL088337 (2020).
doi: 10.1029/2020GL088337
Zhao, M., Cao, L., Bala, G. & Duan, L. Climate response to latitudinal and altitudinal distribution of stratospheric sulfate aerosols. J. Geophys. Res. 126, e2021JD035379 (2021).
doi: 10.1029/2021JD035379
Vogel, A. et al. Uncertainty in aerosol optical depth from modern aerosol‐climate models, reanalyses, and satellite products. J. Geophys. Res. 127, e2021JD035483 (2022).
doi: 10.1029/2021JD035483
WHO Global Air Quality Guidelines: Particulate Matter (PM
Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).
pubmed: 28408086 pmcid: 5439030 doi: 10.1016/S0140-6736(17)30505-6
EPA. Review of the national ambient air quality standards for particulate matter. Environmental Protection Agency. 40 CFR Part 50. Fed. Regis. Rules Regul. 85, 82684–82748 (2020).
European Commission. Air quality standards https://ec.europa.eu/environment/air/quality/standards.htm (2020).
Shaddick, G. et al. Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment. Environ. Sci. Technol. 52, 9069–9078 (2018).
pubmed: 29957991 doi: 10.1021/acs.est.8b02864
Rao, N. D., Kiesewetter, G., Min, J., Pachauri, S. & Wagner, F. Household contributions to and impacts from air pollution in India. Nat. Sustain. 4, 859–867 (2021).
doi: 10.1038/s41893-021-00744-0
Rao, S. et al. Future air pollution in the shared socio-economic pathways. Glob. Environ. Change 42, 346–358 (2017).
doi: 10.1016/j.gloenvcha.2016.05.012
van Donkelaar, A., Martin, R. V. & Park, R. J. Estimating ground-level PM
doi: 10.1029/2005JD006996
Gupta, P. et al. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 40, 5880–5892 (2006).
doi: 10.1016/j.atmosenv.2006.03.016
Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).
pubmed: 35038861 pmcid: 8811958 doi: 10.1021/acs.est.1c04158
Naidu, R. et al. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Environ. Int. 156, 106616 (2021).
pubmed: 33989840 doi: 10.1016/j.envint.2021.106616
Bai, X. et al. How to stop cities and companies causing planetary harm. Nature 609, 463–466 (2022).
pubmed: 36097057 doi: 10.1038/d41586-022-02894-3
Companies taking action. Science Based Targets https://sciencebasedtargets.org/companies-taking-action (2022).
Technical guidance for step 1: assess and step 2: prioritize. Draft for public comment (September 2022). Science Based Targets Network https://sciencebasedtargetsnetwork.org/wp-content/uploads/2022/09/Technical-Guidance-for-Step-1-Assess-and-Step-2-Prioritize.pdf (2022).
Resources for public consultation on technical guidance for companies. Science Based Targets Network https://sciencebasedtargetsnetwork.org/resources/public-consultation-resources/ (2022).
Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
pubmed: 19779433 doi: 10.1038/461472a
de Vries, W., Schulte-Uebbing, L., Kros, H., Voogd, J. C. & Louwagie, G. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total Environ. 786, 147283 (2021).
pubmed: 33958210 doi: 10.1016/j.scitotenv.2021.147283
Schulte-Uebbing, L. & de Vries, W. Reconciling food production and environmental boundaries for nitrogen in the European Union. Sci. Total Environ. 786, 147427 (2021).
doi: 10.1016/j.scitotenv.2021.147427
Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).
pubmed: 37117677 doi: 10.1038/s43016-021-00318-5
Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).
pubmed: 34759364 doi: 10.1038/s41586-021-03984-4
Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020).
pubmed: 32606396 pmcid: 7327079 doi: 10.1038/s41597-020-0530-7
Biggs, R. et al. in Encyclopedia of Theoretical Ecology (eds Hastings, A. & Gross, L.) 609–617 (Univ. of California Press, 2012).
Reisinger, A. et al. The Concept of Risk in the IPCC Sixth Assessment Report: a Summary of Cross-working Group Discussions (IPCC, 2020); https://www.ipcc.ch/site/assets/uploads/2021/02/Risk-guidance-FINAL_15Feb2021.pdf .
Mastrandrea, M. D. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (IPCC, 2010); https://www.ipcc.ch/site/assets/uploads/2017/08/AR5_Uncertainty_Guidance_Note.pdf .
Gampfer, R. Do individuals care about fairness in burden sharing for climate change mitigation? Evidence from a lab experiment. Clim. Change 124, 65–77 (2014).
doi: 10.1007/s10584-014-1091-6
Marotzke, J., Semmann, D. & Milinski, M. The economic interaction between climate change mitigation, climate migration and poverty. Nat. Clim. Change 10, 518–525 (2020).
doi: 10.1038/s41558-020-0783-3
Owusu, K. A., Kulesz, M. M. & Merico, A. Extraction behaviour and income inequalities resulting from a common pool resource exploitation. Sustain. Sci. Pract. Policy 11, 536 (2019).
Liebrand, W. B. G., Jansen, R. W. T. L., Rijken, V. M. & Suhre, C. J. M. Might over morality: social values and the perception of other players in experimental games. J. Exp. Soc. Psychol. 22, 203–215 (1986).
doi: 10.1016/0022-1031(86)90024-7
IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Strauss, B. H., Kulp, S. A., Rasmussen, D. J. & Levermann, A. Unprecedented threats to cities from multi-century sea level rise. Environ. Res. Lett. 16, 114015 (2021).
doi: 10.1088/1748-9326/ac2e6b
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).
Rasmussen, D. J. et al. Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries. Environ. Res. Lett. 13, 034040 (2018).
doi: 10.1088/1748-9326/aaac87
Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).
pubmed: 23858443 pmcid: 3752235 doi: 10.1073/pnas.1219414110
Davies-Jones, R. An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Weather Rev. 136, 2764–2785 (2008).
doi: 10.1175/2007MWR2224.1
Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L. & Fu, C. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Sci. Data 8, 293 (2021).
pubmed: 34737356 pmcid: 8569144 doi: 10.1038/s41597-021-01079-3
CIESIN. Gridded population of the world, version 4 (GPWv4): population count adjusted to match 2015 revision of UN WPP country totals, revision 11. Center for International Earth Science Information Network, Columbia Univ. https://doi.org/10.7927/H4PN93PB (2018).
Im, E.-S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).
pubmed: 28782036 pmcid: 5540239 doi: 10.1126/sciadv.1603322
Shaw, R. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 1457–1579 (Cambridge Univ. Press, 2022).
Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth Syst. Monit. 9, 927–953 (2017).
CIESIN-CIDR. Low elevation coastal zone (LECZ) urban-rural population and land area estimates, version 3. Columbia Univ. and CUNY Institute for Demographic Research, City Univ. of New York https://doi.org/10.7927/d1x1-d702 (2021).
van Donkelaar, A. et al. Monthly global estimates of fine particulate matter and their uncertainty. Environ. Sci. Technol. 55, 15287–15300 (2021).
pubmed: 34724610 doi: 10.1021/acs.est.1c05309
Beusen, A. H. W., Van Beek, L. P. H., Bouwman, A. F., Mogollón, J. M. & Middelburg, J. J. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water—description of IMAGE–GNM and analysis of performance. Geosci. Model Dev. 8, 4045–4067 (2015).
doi: 10.5194/gmd-8-4045-2015
Beusen, A. H. W. et al. Exploring river nitrogen and phosphorus loading and export to global coastal waters in the shared socio-economic pathways. Glob. Environ. Change 72, 102426 (2022).
doi: 10.1016/j.gloenvcha.2021.102426
Mekonnen, M. M. & Hoekstra, A. Y. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high‐resolution global study. Water Resour. Res. 54, 345–358 (2018).
doi: 10.1002/2017WR020448
Fekete, B. M., Vörösmarty, C. J. & Lammers, R. B. Scaling gridded river networks for macroscale hydrology: development, analysis, and control of error. Water Resour. Res. 37, 1955–1967 (2001).
doi: 10.1029/2001WR900024
Wisser, D., Fekete, B. M., Vörösmarty, C. J. & Schumann, A. H. Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network Hydrology (GTN-H). Hydrol. Earth Syst. Sci. 14, 1–24 (2010).
doi: 10.5194/hess-14-1-2010

Auteurs

Johan Rockström (J)

Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany. johan.rockstrom@pik-potsdam.de.
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany. johan.rockstrom@pik-potsdam.de.
Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden. johan.rockstrom@pik-potsdam.de.

Joyeeta Gupta (J)

Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, The Netherlands.
IHE Delft Institute for Water Education, Delft, The Netherlands.

Dahe Qin (D)

State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
China Meteorological Administration, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Steven J Lade (SJ)

Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden. steven.lade@futureearth.org.
Future Earth Secretariat, Stockholm, Sweden. steven.lade@futureearth.org.
Fenner School of Environment & Society, Australian National University, Canberra, Australia. steven.lade@futureearth.org.

Jesse F Abrams (JF)

Global Systems Institute, University of Exeter, Exeter, UK.

Lauren S Andersen (LS)

Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.

David I Armstrong McKay (DI)

Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
Global Systems Institute, University of Exeter, Exeter, UK.
Georesilience Analytics, Leatherhead, UK.

Xuemei Bai (X)

Fenner School of Environment & Society, Australian National University, Canberra, Australia.

Govindasamy Bala (G)

Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India.

Stuart E Bunn (SE)

Australian Rivers Institute, Griffith University, Brisbane, Australia.

Daniel Ciobanu (D)

Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.

Fabrice DeClerck (F)

EAT, Oslo, Norway.
Alliance of Bioversity International and CIAT of the CGIAR, Montpellier, France.

Kristie Ebi (K)

Center for Health & the Global Environment, University of Washington, Seattle, WA, USA.

Lauren Gifford (L)

School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA.

Christopher Gordon (C)

Institute for Environment and Sanitation Studies, University of Ghana, Legon, Ghana.

Syezlin Hasan (S)

Australian Rivers Institute, Griffith University, Brisbane, Australia.

Norichika Kanie (N)

Graduate School of Media and Governance, Keio University, Fujisawa, Japan.

Timothy M Lenton (TM)

Global Systems Institute, University of Exeter, Exeter, UK.

Sina Loriani (S)

Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.

Diana M Liverman (DM)

School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA.

Awaz Mohamed (A)

Functional Forest Ecology, Universität Hamburg, Barsbüttel, Germany.

Nebojsa Nakicenovic (N)

International Institute for Applied Systems Analysis, Laxenburg, Austria.

David Obura (D)

CORDIO East Africa, Mombasa, Kenya.

Daniel Ospina (D)

Future Earth Secretariat, Stockholm, Sweden.

Klaudia Prodani (K)

Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, The Netherlands.

Crelis Rammelt (C)

Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, The Netherlands.

Boris Sakschewski (B)

Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.

Joeri Scholtens (J)

Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, The Netherlands.

Ben Stewart-Koster (B)

Australian Rivers Institute, Griffith University, Brisbane, Australia.

Thejna Tharammal (T)

Interdisciplinary Center for Water Research, Indian Institute of Science, Bengaluru, India.

Detlef van Vuuren (D)

Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands.

Peter H Verburg (PH)

Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland.
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Ricarda Winkelmann (R)

Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.

Caroline Zimm (C)

International Institute for Applied Systems Analysis, Laxenburg, Austria.

Elena M Bennett (EM)

Bieler School of Environment, McGill University, Montreal, Canada.
Department of Natural Resource Sciences, McGill University, Montreal, Canada.

Stefan Bringezu (S)

Center for Environmental Systems Research, Kassel University, Kassel, Germany.

Wendy Broadgate (W)

Future Earth Secretariat, Stockholm, Sweden.

Pamela A Green (PA)

Environmental Sciences Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY, USA.

Lei Huang (L)

National Climate Center, Beijing, China.

Lisa Jacobson (L)

Future Earth Secretariat, Stockholm, Sweden.

Christopher Ndehedehe (C)

Australian Rivers Institute, Griffith University, Brisbane, Australia.
School of Environment & Science, Griffith University, Nathan, Australia.

Simona Pedde (S)

Future Earth Secretariat, Stockholm, Sweden.
Soil Geography and Landscape Group, Wageningen University & Research, Wageningen, The Netherlands.

Juan Rocha (J)

Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
Future Earth Secretariat, Stockholm, Sweden.

Marten Scheffer (M)

Department of Environmental Sciences, Wageningen University & Research, Wageningen, The Netherlands.

Lena Schulte-Uebbing (L)

Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, The Netherlands.

Wim de Vries (W)

Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, The Netherlands.

Cunde Xiao (C)

State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China.

Chi Xu (C)

School of Life Sciences, Nanjing University, Nanjing, China.

Xinwu Xu (X)

China Meteorological Administration, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Noelia Zafra-Calvo (N)

Basque Centre for Climate Change bc3, Scientific Campus of the University of the Basque Country, Biscay, Spain.

Xin Zhang (X)

Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH