Multiple paternity is related to adult sex ratio and sex determination system in reptiles.
extra-pair paternity
genetic mating system
multiple mating
phylogenetic comparative analysis
sex chromosome
social behaviour
Journal
Journal of evolutionary biology
ISSN: 1420-9101
Titre abrégé: J Evol Biol
Pays: Switzerland
ID NLM: 8809954
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
31
03
2023
received:
10
12
2021
accepted:
16
04
2023
medline:
7
6
2023
pubmed:
1
6
2023
entrez:
1
6
2023
Statut:
ppublish
Résumé
The adult sex ratio (ASR, the proportion of males in the adult population) is an emerging predictor of reproductive behaviour, and recent studies in birds and humans suggest it is a major driver of social mating systems and parental care. ASR may also influence genetic mating systems. For instance male-skewed ASRs are expected to increase the frequency of multiple paternity (defined here as a clutch or litter sired by two or more males) due to higher rates of coercive copulations by males, and/or due to females exploiting the opportunity of copulation with multiple males to increase genetic diversity of their offspring. Here, we evaluate this hypothesis in reptiles that often exhibit high frequency of multiple paternity although its ecological and life-history predictors have remained controversial. Using a comprehensive dataset of 81 species representing all four non-avian reptile orders, we show that increased frequency of multiple paternity is predicted by more male-skewed ASR, and this relationship is robust to simultaneous effects of several life-history predictors. Additionally, we show that the frequency of multiple paternity varies with the sex determination system: species with female heterogamety (ZZ/ZW sex chromosomes) exhibit higher levels of multiple paternity than species with male heterogamety (XY/XX) or temperature-dependent sex determination. Thus, our across-species comparative study provides the first evidence that genetic mating system depends on ASR in reptiles. We call for further investigations to uncover the complex evolutionary associations between mating systems, sex determination systems and ASR.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
935-944Informations de copyright
© 2023 European Society for Evolutionary Biology.
Références
Adkins-Regan, E., & Reeve, H. K. (2014). Sexual dimorphism in body size and the origin of sex-determination systems. The American Naturalist, 183, 519-536.
Ancona, S., Dénes, F., Krüger, O., Székely, T., & Beissinger, S. R. (2017). Estimating adult sex ratios in nature. Philosophical Transactions of the Royal Society B, 372, 20160313.
Angilletta, M. J., Steury, T. D., & Sears, M. W. (2004). Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle. Integrative and Comparative Biology, 44, 498-509.
Ashman, T.-L., Bachtrog, D., Blackmon, H., Goldberg, E. E., Hahn, M. W., Kirkpatrick, M., Kitano, J., Mank, J. E., Mayrose, I., Ming, R., Otto, S. P., Peichel, C. L., Pennell, M. W., Perrin, N., Ross, L., Valenzuela, N., Vamosi, J. C., Paradis, E., Claude, J., … FitzJohn, R. G. (2014). Tree of sex: A database of sexual systems. Scientific Data, 1, 561-572.
Bleu, J., Bessa-Gomez, C., Laloi, D. (2012): Evolution of female choosiness and mating frequency: effects of mating cost, density and sex ratio. Animal Behaviour, 83, 131-136.
Bókony, V., Milne, G., Pipoly, I., Székely, T., & Liker, A. (2019). Sex ratios and bimaturism differ between temperature-dependent and genetic sex-determination systems in reptiles. BMC Evolutionary Biology, 19, 1-7.
Bonnet, X., Golubović, A., Arsovski, D., Dević, S., Ballouard, J. M., Sterijovski, B., Ajtić, R., Barbraud, C., & Tomović, L. (2016). A prison effect in a wild population: A scarcity of females induces homosexual behaviors in males. Behavioral Ecology, 27, 1206-1215.
Brouwer, L., & Griffith, S. C. (2019). Extra-pair paternity in birds. Molecular Ecology, 28, 4864-4882.
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: A practical information-theoretic approach (2nd ed.). Springer Verlag
Clutton-Brock, T. (2021). Social evolution in mammals. Science, 373, 1-47.
Cornejo-Páramo, P., Dissanayake, D. S. B., Lira-Noriega, A., Martínez-Pacheco, M. L., Acosta, A., Ramirez-Suástegui, C., Mendez-de-la-Cruz, F. R., Székely, T., Urrutia, A. O., Georges, A., & Cortez, D. (2020). Viviparous reptile regarded to have temperature-dependent sex determination has old XY chromosomes. Genome Biology and Evolution, 12, 924-930.
Dreiss, A. N., Cote, J., Richard, M., Federici, P., & Clobert, J. (2010). Age-and sex-specific response to population density and sex ratio. Behavioral Ecology, 21, 356-364.
Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215-223.
Fitze, P. S., Le Galliard, J. F., Federici, P., Richard, M., & Clobert, J. (2005). Conflict over multiple-partner mating between males and females of the polygynandrous common lizards. Evolution, 59, 2451-2459.
Fitzpatrick, J. L., & Lüpold, S. (2014). Sexual selection and the evolution of sperm quality. Molecular Human Reproduction, 20, 1180-1189.
Fox, J., & Weisberg, S. (2019). An {R} companion to applied regression (3rd ed.). Sage Publications.
Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. The American Naturalist, 160, 712-726.
Garamszegi, L. Z. (2014). Uncertainties due to within-species variation in comparative studies: Measurement errors and statistical weights. In L. Garamszegi (Ed.), Modern phylogenetic comparative methods and their application in Evolutionary Biology (pp. 157-199). Springer.
Golubovic, A., Arsovski, D., Tomovic, L., & Bonnet, X. (2018). Is sexual brutality maladaptive under high population density? Biological Journal of the Linnean Society, 124, 394-402.
Gonzalez-Voyer, A., Thomas, G. H., Liker, A., Krüger, O., Komdeur, J., & Székely, T. (2022). Sex roles in birds: Phylogenetic analyses of the influence of climate, life histories and social environment. Ecology Letters, 25, 647-660.
Graham, M. H. (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84, 2809-2815.
Grant, P. R., & Grant, B. R. (2019). Adult sex ratio influences mate choice in Darwin's finches. Proceedings of the National Academy of Sciences of the United States of America, 116, 12373-12382.
Guillon, J. M., Guéry, L., Hulin, V., & Girondot, M. (2012). A large phylogeny of turtles (Testudines) using molecular data. Contributions to Zoology, 81, 147-158.
Halliwell, B., Uller, T., Holland, B. R., & While, G. M. (2017). Live bearing promotes the evolution of sociality in reptiles. Nature Communications, 8. https://doi.org/10.1038/s41467-017-02220-w
Hesketh, T., & Xing, Z. W. (2006). Abnormal sex ratios in human populations: Causes and consequences. Proceedings of the National Academy of Sciences of the United States of America, 103, 13271-13275.
Hill, P., Shams, F., Burridge, C. P., Wapstra, E., & Ezaz, T. (2021). Differences in homomorphic sex chromosomes are associated with population divergence in sex determination in Carinascincus ocellatus (Scincidae: Lygosominae). Cell, 10, 291.
Iverson, J. B., Balgooyen, C. P., Byrd, K. K., & Lyddan, K. K. (1993). Latitudinal variation in egg and clutch size in turtles. Canadian Journal of Zoology, 71, 2448-2461.
Jennions, M. D., & Petrie, M. (2000). Why do females mate multiply? A review of the genetic benefits. Biological Reviews of the Cambridge Philosophical Society, 75, 21-64.
Jirotkul, M. (1999). Operational sex ratio influences female preference and male-male competition in guppies. Animal Behaviour, 58, 287-294.
Johnson, M. A., Kamath, A., Kirby, R., Fresquez, C. C., Wang, S., Stehle, C. M., Templeton, A. R., & Losos, J. B. (2021). What determines paternity in wild lizards? A spatiotemporal analysis of behavior and morphology. Integrative and Comparative Biology, 61, 634-642.
Jones, A. G., & Ardren, W. R. (2003). Methods of parentage analysis in natural populations. Molecular Ecology, 12, 2511-2523.
Katona, G., Vági, B., Végvári, Z., Liker, A., Freckleton, R. P., Bókony, V., & Székely, T. (2021). Are evolutionary transitions in sexual size dimorphism related to sex determination in reptiles? Journal of Evolutionary Biology, 34, 594-603.
Kiester, A. R. (1991). Species density of north American amphibians and reptiles. Systematic Zoology, 20, 127-137.
Kokko, H., & Jennions, M. D. (2008). Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology, 21, 919-948.
Laloi, D., Eizaguirre, C., Fédérici, P., & Massot, M. (2011). Female choice for heterozygous mates changes along successive matings in a lizard. Behavioural Processes, 88, 149-154.
Le Galliard, J.-F., Fitze, P. S., Ferrière, R., & Clobert, J. (2005). Sex ratio bias, male aggression, and population collapse in lizards. Proceedings of the National Academy of Sciences of the United States of America, 102, 18231-18236.
Lee, P. L. M., Schofield, G., Haughey, R. I., Mazaris, A. D., & Hays, G. C. (2018). A review of patterns of multiple paternity across sea turtle rookeries. Advances in Marine Biology, 79, 1-31.
Lee, P. L. M., Sherman, C. D. H., Rollins, L. A., Wapstra, E., & Phillips, K. P. (2022). Do female amphibians and reptiles have greater reproductive output if they have more mates? Behavioral Ecology and Sociobiology, 76. https://doi.org/10.1007/s00265-022-03194-6
Lenth, R. V. (2018). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.2.3.
Liker, A., Bókony, V., Pipoly, I., Lemaître, J. F., Gaillard, J. M., Székely, T., & Freckleton, R. P. (2021). Evolution of large males is associated with female-skewed adult sex ratios in amniotes. Evolution, 75, 1-14.
Liker, A., Freckleton, R. P., & Székely, T. (2013). The evolution of sex roles in birds is related to adult sex ratio. Nature Communications, 4, 1587.
Liker, A., Freckleton, R. P., & Székely, T. (2014). Divorce and infidelity are associated with skewed adult sex ratios in birds. Current Biology, 24, 880-884.
Lislevand, T., Figuerola, J., & Székely, T. (2007). Avian body sizes in relation to fecundity, mating system, display behaviour and resource sharing. Ecology, 88, 1605.
Maddison, W. P., & Maddison, D. R. (2019). Mesquite: a modular system for evolutionary analysis.
Maldonado-Chaparro, A. A., Montiglio, P. O., Forstmeier, W., Kempenaers, B., & Farine, D. R. (2018). Linking the fine-scale social environment to mating decisions: A future direction for the study of extra-pair paternity. Biological Reviews, 93, 1558-1577.
Mazerolle, M. J. (2012). Package ‘AICcmodavg’.
Nakagawa, S., & Holger, S. (2020). Repeatability for gaussian and non-gaussian data: A prac- tical guide for biologists. Biological Reviews, 85, 935-956.
Noble, D. W. A., Keogh, J. S., & Whiting, M. J. (2013). Multiple mating in a lizard increases fecundity but provides no evidence for genetic benefits. Behavioral Ecology, 24, 1128-1137.
Oaks, J. R. (2011). A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution, 65, 3285-3297.
Olsson, M., & Madsen, T. (1995). Female choice on male quantitative traits in lizards - why is it so rare? Behavioral Ecology and Sociobiology, 36, 179-184.
Olsson, M., & Madsen, T. (2001). Promiscuity in sand lizards (Lacerta agilis) and adder snakes (Vipera berus): Causes and consequences. Journal of Heredity, 92, 190-197.
Olsson, M., Shine, R., & Madsen, T. (1996). Sperm selection by females. Nature, 383, 585.
Pagel, M. (1998). Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26, 331-348.
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877-884.
Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
Petrie, M., & Kempenaers, B. (1998). Extra-pair paternity in birds: Explaining variation between species and populations. Trends in Ecology & Evolution, 13, 52-58.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2021). nlme: Linear and Nonlinear Mixed Effects Models.
Pipoly, I., Bókony, V., Kirkpatrick, M., Donald, P. F., Székely, T., & Liker, A. (2015). The genetic sex-determination system predicts adult sex ratios in tetrapods. Nature, 527, 91-94.
Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93.
Queller, D. C. (1997). Why do females care more than males? Proceedings of the Royal Society of London. Series B: Biological Sciences, 264, 1555-1557.
R Core Team. (2020). R: A Language and Environment for Statistical Computing.
Reeve, H. K., & Pfennig, D. W. (2003). Genetic biases for showy males: Are some genetic systems especially conducive to sexual selection? Proceedings of the National Academy of Sciences of the United States of America, 100, 1089-1094.
Regis, K. W., & Meik, J. M. (2017). Allometry of sexual size dimorphism in turtles: A comparison of mass and length data. PeerJ, 2017, e2914.
Rivas, J. A., & Burghardt, G. M. (2005). Snake mating systems, behavior, and evolution: The revisionary implications of recent findings. Journal of Comparative Psychology, 119, 447-454.
Roitberg, E. S., Kuranova, V. N., Bulakhova, N. A., Orlova, V. F., Eplanova, G. V., Zinenko, O. I., Shamgunova, R. R., Hofmann, S., & Yakovlev, V. A. (2013). Variation of reproductive traits and female body size in the Most widely-ranging terrestrial reptile: Testing the effects of reproductive mode, lineage, and climate. Evolutionary Biology, 40, 420-438.
Royle, N. R., Russel, A. F., & Wilson, A. J. (2013). The evolution of flexible parenting. Science, 365, 776-781.
Sabath, N., Itescu, Y., Feldman, A., Meiri, S., Mayrose, I., & Valenzuela, N. (2016). Sex determination, longevity, and the birth and death of reptilian species. Ecology and Evolution, 6, 5207-5220.
Sarre, S. D., Ezaz, T., & Georges, A. (2011). Transitions between sex-determining systems in reptiles and amphibians. Annual Review of Genomics and Human Genetics, 12, 391-406.
Schacht, R., Kramer, K. L., Székely, T., & Kappeler, P. M. (2017). Adult sex ratios and reproductive strategies: A critical re-examination of sex differences in human and animal societies. Philosophical Transactions of the Royal Society B, 372, 20160309.
Schacht, R., & Mulder, M. B. (2015). Sex ratio effects on reproductive strategies in humans. Royal Society Open Science, 2. http://doi.org/10.1098/rsos.140402
Scharf, I., Feldman, A., Novosolov, M., Pincheira-Donoso, D., Das, I., Böhm, M., Uetz, P., Torres-Carvajal, O., Bauer, A., Roll, U., & Meiri, S. (2015). Late bloomers and baby boomers: Ecological drivers of longevity in squamates and the tuatara. Global Ecology and Biogeography, 24, 396-405.
Shine, R. (1994). Sexual size dimorphism in snakes revisited. Copeia, 1994, 326-346.
Simmons, L. W. (2002). Sperm competition and its evolutionary consequences In the insects. Monographs in Behavior and Ecology, 45, 525-567.
Smith, R. J. (1999). Statistics of sexual size dimorphism. Journal of Human Evolution, 36, 423-458.
Székely, T., Weissing, F. J., & Komdeur, J. (2014). Adult sex ratio variation: Implications for breeding system evolution. Journal of Evolutionary Biology, 27, 1500-1512.
Taylor, M. L., Price, T. A. R., & Wedell, N. (2014). Polyandry in nature: A global analysis. Trends in Ecology and Evolution, 29, 376-383.
Thorbjarnarson, J. B. (1996). Reproductive characteristics of the order crocodylia. Herpetologica, 52, 8-24.
Thorn, K. M., Hutchinson, M. N., Archer, M., & Lee, M. S. Y. (2019). A new scincid lizard from the Miocene of northern Australia, and the evolutionary history of social skinks (Scincidae: Egerniinae). Journal of Vertebrate Paleontology, 39, e1577873.
Uetz, P., Freed, P., & Hošek, J. (2020). The reptile database.
Uller, T., & Olsson, M. (2008). Multiple paternity in reptiles: Patterns and processes. Molecular Ecology, 17, 2566-2580.
Vahl, W. K., Boiteau, G., de Heij, M. E., MacKinley, P. D., & Kokko, H. (2013). Female Fertilization: Effects of Sex-Specific Density and Sex Ratio Determined Experimentally for Colorado Potato Beetles and Drosophila Fruit Flies. PLoS One, 8, e60381. https://doi.org/10.1371/journal.pone.0060381
Valcu, C. M., Valcu, M., & Kempenaers, B. (2021). The macroecology of extra- pair paternity in birds. Molecular Ecology, 30, 4484-4898.
Westneat, D. F., & Stewart, I. R. K. (2003). Extra-pair paternity in birds: Causes, correlates, and conflict. Annual Review of Ecology, Evolution, and Systematics, 34, 365-396.
While, G. M., Uller, T., & Wapstra, E. (2009). Family conflict and the evolution of sociality in reptiles. Behavioral Ecology, 20, 245-250.
Zajdel, J., Lance, S. L., Rainwater, T. R., Wilkinson, P. M., Hale, M. D., & Parrott, B. B. (2019). Mating dynamics and multiple paternity in a long-lived vertebrate. Ecology and Evolution, 9, 10109-10121.