Tamm Plasmon Resonance as Optical Fingerprint of Silver/Bacteria Interaction.
Tamm plasmon
bacterial detection
bacterial responsivity
photonic crystals
silver nanostructures
Journal
ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991
Informations de publication
Date de publication:
14 Jun 2023
14 Jun 2023
Historique:
medline:
1
6
2023
pubmed:
1
6
2023
entrez:
1
6
2023
Statut:
ppublish
Résumé
The incorporation of responsive elements into photonic crystals is an effective strategy for fabricating active optical components to be used as sensors, actuators, and modulators. In particular, the combination of simple multilayered dielectric mirrors with optically responsive plasmonic materials has proven to be successful. Recently, Tamm plasmon (TP) modes have emerged as powerful tools for these purposes. These modes arise at the interface between a distributed Bragg reflector (DBR) and a plasmonic layer and can be excited at a normal incidence angle. Although the TP field is located usually at the DBR/metal interface, recent studies have demonstrated that nanoscale corrugation of the metal layer permits access to the TP mode from outside, thus opening exciting perspectives for many real-life applications. In this study, we show that the TP resonance obtained by capping a DBR with a nanostructured layer of silver is responsive to
Identifiants
pubmed: 37260129
doi: 10.1021/acsami.3c05473
pmc: PMC10273179
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
27750-27758Références
ACS Appl Nano Mater. 2023 Mar 22;6(7):5274-5283
pubmed: 37092121
Bacteriol Rev. 1961 Mar;25(1):32-48
pubmed: 16350168
Phys Rev E. 2023 Jan;107(1-1):014702
pubmed: 36797897
Small. 2009 Jul;5(13):1498-503
pubmed: 19326355
J Phys Chem Lett. 2019 Sep 5;10(17):4980-4986
pubmed: 31407906
Nano Lett. 2012 Aug 8;12(8):4271-5
pubmed: 22765771
J Biomed Sci. 2008 Jan;15(1):5-14
pubmed: 17657587
Nano Lett. 2013 Jul 10;13(7):3179-84
pubmed: 23777399
Sci Adv. 2020 Sep 4;6(36):
pubmed: 32917622
Appl Environ Microbiol. 2007 Mar;73(6):1712-20
pubmed: 17261510
Beilstein J Nanotechnol. 2016 Oct 6;7:1404-1410
pubmed: 27826514
Nat Rev Microbiol. 2013 Jun;11(6):371-84
pubmed: 23669886
Adv Mater. 2010 Mar 26;22(12):1351-4
pubmed: 20437480
J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(3):286-327
pubmed: 26072980
Sci Rep. 2017 Jun 20;7(1):3859
pubmed: 28634327
Cell Metab. 2019 Aug 6;30(2):251-259
pubmed: 31279676
Small. 2009 Sep;5(18):2048-52
pubmed: 19475644
Sci Rep. 2019 May 6;9(1):6973
pubmed: 31061422
Nat Mater. 2021 Dec;20(12):1663-1669
pubmed: 34675374
ACS Nano. 2010 Nov 23;4(11):6903-13
pubmed: 20968290
Faraday Discuss. 2020 Oct 23;223(0):125-135
pubmed: 32720674
Sci Rep. 2018 Feb 23;8(1):3517
pubmed: 29476146
Adv Mater. 2014 Apr 16;26(15):2413-8
pubmed: 24375812
Small. 2011 Nov 18;7(22):3153-7
pubmed: 21916009
J Basic Microbiol. 2014 Sep;54(9):905-15
pubmed: 24026946
ACS Nano. 2018 May 22;12(5):4536-4544
pubmed: 29727169
Adv Mater. 2012 Sep 11;24(35):OP265-9
pubmed: 22886997
Adv Sci (Weinh). 2020 Apr 06;7(10):1902913
pubmed: 32440470
Nano Lett. 2006 Nov;6(11):2456-61
pubmed: 17090073
Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1636-53
pubmed: 23255416
J Colloid Interface Sci. 2004 Jul 1;275(1):177-82
pubmed: 15158396
Phys Chem Chem Phys. 2022 Mar 2;24(9):5317-5322
pubmed: 35188149