Altered microstructure of the contralesional ventral premotor cortex and motor output after stroke.
DWI
cortical
hemisphere
plasticity
unaffected
Journal
Brain communications
ISSN: 2632-1297
Titre abrégé: Brain Commun
Pays: England
ID NLM: 101755125
Informations de publication
Date de publication:
2023
2023
Historique:
received:
18
08
2022
revised:
17
03
2023
accepted:
15
05
2023
medline:
2
6
2023
pubmed:
2
6
2023
entrez:
2
6
2023
Statut:
epublish
Résumé
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure. We re-analysed clinical and imaging data of 42 well-recovered chronic stroke patients from 2 independent cohorts (mean age 64 years, 4 left-handed, 71% male, 16 right-sided strokes) and 33 healthy controls of similar age and gender. Cortical fractional anisotropy and cortical thickness values were obtained for six key sensorimotor areas of the contralesional hemisphere. The regions included the primary motor cortex, dorsal and ventral premotor cortex, supplementary and pre-supplementary motor areas, and primary somatosensory cortex. Linear models were estimated for group comparisons between patients and controls and for correlations between cortical fractional anisotropy and cortical thickness and clinical scores. Compared with controls, stroke patients exhibited a reduction in fractional anisotropy in the contralesional ventral premotor cortex (
Identifiants
pubmed: 37265601
doi: 10.1093/braincomms/fcad160
pii: fcad160
pmc: PMC10231803
doi:
Types de publication
Journal Article
Langues
eng
Pagination
fcad160Commentaires et corrections
Type : ErratumIn
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.
Déclaration de conflit d'intérêts
The authors report no competing interests.
Références
J Cereb Blood Flow Metab. 2020 Mar;40(3):611-621
pubmed: 30782059
Magn Reson Med. 2009 Sep;62(3):717-30
pubmed: 19623619
Neuroimage. 2014 Oct 1;99:166-79
pubmed: 24879923
Eur J Neurosci. 2003 Aug;18(4):775-88
pubmed: 12925004
Stroke. 2014 Mar;45(3):788-93
pubmed: 24496396
Neuroimage Clin. 2017 Feb 02;14:679-684
pubmed: 28377881
Neurology. 2019 Feb 5;92(6):e567-e575
pubmed: 30635479
Front Neurosci. 2021 Nov 03;15:764671
pubmed: 34803596
Neuroimage Clin. 2013 May 21;2:797-803
pubmed: 24179830
Ann Neurol. 1998 Mar;43(3):360-9
pubmed: 9506553
Cereb Cortex. 2011 Apr;21(4):756-68
pubmed: 20801897
Neuroimage. 2006 Sep;32(3):989-94
pubmed: 16854598
Cereb Cortex. 2008 Mar;18(3):638-47
pubmed: 17602141
IEEE Trans Med Imaging. 2012 Jan;31(1):16-32
pubmed: 21768045
Cereb Cortex. 2017 Jan 1;27(1):635-645
pubmed: 26508336
Ann Clin Transl Neurol. 2016 Jan 19;3(3):233-44
pubmed: 27042683
Neuroimage. 2006 Jul 15;31(4):1453-74
pubmed: 16571375
Restor Neurol Neurosci. 2016 Sep 21;34(5):733-46
pubmed: 27258945
BMC Neurosci. 2005 Nov 25;6:67
pubmed: 16309550
J Magn Reson. 2018 Jul;292:106-116
pubmed: 29705039
Quant Imaging Med Surg. 2021 May;11(5):2114-2124
pubmed: 33936992
Neurology. 2020 Sep 1;95(9):e1174-e1187
pubmed: 32586896
Front Neurol. 2019 Jul 17;10:697
pubmed: 31379702
Cereb Cortex. 2009 Dec;19(12):2916-29
pubmed: 19363145
Sci Transl Med. 2013 Jan 16;5(168):168ra7
pubmed: 23325800
Ann Neurol. 2019 Dec;86(6):853-865
pubmed: 31604371
J Neurosci. 1993 Jul;13(7):2801-20
pubmed: 8331373
J Neurol Sci. 2012 Nov 15;322(1-2):122-8
pubmed: 22858417
Neuroimage. 2012 Feb 1;59(3):2771-82
pubmed: 22023742
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Neuroimage. 2019 Nov 15;202:116137
pubmed: 31473352
J Comp Neurol. 2012 Sep 1;520(13):2917-29
pubmed: 22350926
J Cereb Blood Flow Metab. 2015 Sep;35(9):1507-14
pubmed: 25920957
Brain Commun. 2020 Jan 10;2(1):fcaa001
pubmed: 32954275
Cereb Cortex. 2004 Jan;14(1):11-22
pubmed: 14654453
J Neurophysiol. 2006 Dec;96(6):3506-11
pubmed: 16987930
Exp Neurol. 2018 Jul;305:13-25
pubmed: 29540323
J Neurol Neurosurg Psychiatry. 2004 Dec;75(12):1714-8
pubmed: 15548489
J Neurosci. 2010 Sep 8;30(36):11926-37
pubmed: 20826657
J Neurosci. 2006 May 31;26(22):6096-102
pubmed: 16738254
Brain Struct Funct. 2015 Sep;220(5):2533-50
pubmed: 24906703
Front Neurosci. 2018 Feb 21;12:92
pubmed: 29515362
Neuroimage. 2018 Dec;183:847-858
pubmed: 30193973
J Neurophysiol. 2018 Oct 1;120(4):1680-1694
pubmed: 29924707
J Neurosci. 2007 Nov 7;27(45):12132-8
pubmed: 17989279
Hum Brain Mapp. 2014 Aug;35(8):3841-56
pubmed: 24382651
Behav Neurol. 2021 Nov 11;2021:3010555
pubmed: 34804258
Neural Regen Res. 2019 Feb;14(2):272-279
pubmed: 30531010
Cereb Cortex. 2020 Mar 14;30(3):1330-1344
pubmed: 31647536
Stroke. 2001 Sep;32(9):2049-54
pubmed: 11546896
Neurobiol Aging. 2014 Jun;35(6):1404-11
pubmed: 24387983
J Neurophysiol. 2003 Jun;89(6):3205-14
pubmed: 12783955
Medicine (Baltimore). 2021 Jan 8;100(1):e24262
pubmed: 33429834
Brain Commun. 2022 Nov 21;5(1):fcac301
pubmed: 36601620
Brain Commun. 2022 Feb 22;4(2):fcac049
pubmed: 35274100
Sci Rep. 2020 Apr 15;10(1):6458
pubmed: 32296087
Front Syst Neurosci. 2010 Oct 15;4:149
pubmed: 21048904