Environmental drivers of ground-floor bryophytes diversity in temperate forests.
Beech forests
Coniferous plantation
Cryptogams
Soil
Stand structure
Journal
Oecologia
ISSN: 1432-1939
Titre abrégé: Oecologia
Pays: Germany
ID NLM: 0150372
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
12
12
2022
accepted:
23
05
2023
medline:
30
6
2023
pubmed:
2
6
2023
entrez:
2
6
2023
Statut:
ppublish
Résumé
Bryophytes play important role in forest ecosystem functioning and their distribution and diversity are driven by numerous environmental factors. The aim of the present study was to bring new insights in deeper understanding of terrestrial bryophytes diversity in temperate forests, as well as to determine the environmental factors which have predominant influence on ground-floor bryophytes. The survey was conducted in Fruška Gora Mountain (Serbia) across seven forest sites where ground-bryophytes were sampled. Soil moisture, temperature, and pH were measured as soil characteristics, while herbaceous cover, litter cover, stream distance, number of trees and shrubs were used as characteristics of stand structure. Species richness, Shannon diversity index, and evenness index were used as diversity measures. Generalised linear model and canonical correspondence analysis (CCA) were used to test the influence of environmental variables on bryophyte diversity. Litter cover was the most important explanatory variable, followed by soil moisture, stream distance and tree number, respectively. Overall, the stand structure was found to have a greater impact on ground-floor bryophyte diversity compared to soil characteristics. Identification of the most significant ecological factors affecting the diversity and distribution of bryophytes in forest ecosystems is of great importance in forest ecology with the aim of defining adequate management methods to preserve the biodiversity of forests, with particular emphasis on endangered and rare bryophyte species.
Identifiants
pubmed: 37266587
doi: 10.1007/s00442-023-05391-0
pii: 10.1007/s00442-023-05391-0
doi:
Substances chimiques
Soil
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
275-285Subventions
Organisme : Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
ID : 451-03-68/2022-14/200125
Organisme : Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
ID : 451-03-47/2023-01/200125
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Alpert P (1985) Distribution quantified by microtopography in an assemblage of saxicolous mosses. Vegetatio 64:131–139. https://doi.org/10.1007/BF00044789
doi: 10.1007/BF00044789
Alpert P (1991) Microtopography as habitat structure for mosses on rocks. In: Bell SS, Mccoy DE, Mushinsky HR (eds) Habit structure. The physical arrangement of objects in space. Chapman and Hall, London, pp 120–139
doi: 10.1007/978-94-011-3076-9_7
Atherton I, Bosanquiet S, Lawley M (2010) Mosses and liverworts of Britain and Ireland-a field guide. British Bryological Society, Peterborough
Benscoter BW, Vitt DH (2007) Evaluating feathermoss growth: a challenge to traditional methods and implications for the boreal carbon budget. J Ecol 95:151–158. https://doi.org/10.1111/j.1365-2745.2006.01180.x
doi: 10.1111/j.1365-2745.2006.01180.x
Bergamini A, Pauli D, Peintinger M, Schmid B (2001) Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. J Ecol 89:920–929. https://doi.org/10.1111/j.1365-2745.2001.00613.x
doi: 10.1111/j.1365-2745.2001.00613.x
Birks HJB, Heegaard E, Birks HH, Jonsgard B (1998) Quantifying bryophyte-environment relationships. In: Bates JW, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. Maney Publishing and the British Bryological Society, London, Leeds, pp 305–319
Branković S, Medarević M, Pantić D, Petrović N, Šljukić B, Obradović S (2009) Šumski fond Republike Srbije-stanje i problemi. Glas Šumar Fak 100:7–30. https://doi.org/10.2298/GSF0900007B
doi: 10.2298/GSF0900007B
Burgess-Conforti J, Moore P, Owens P, Miller D, Ashworth A, Hays P, Evans-White M, Anderson K (2019) Are soils beneath coniferous tree stands more acidic than soils beneath deciduous tree stands? Environ Sci Pollut Res 26(15):1–10. https://doi.org/10.1007/s11356-019-04883-y
doi: 10.1007/s11356-019-04883-y
Caners RT, Mackdonald SE, Belland RJ (2013) Bryophyte assemblage structure after partial harvesting in boreal mixedwood forest depends on residual canopy abundance and composition. For Ecol Manag 289:486–500. https://doi.org/10.1016/j.foreco.2012.09.044
doi: 10.1016/j.foreco.2012.09.044
Chen Y, Niu S, Li P, Jia H, Wang H, Ye Y, Yuan Z (2017) Stand structure and substrate diversity as two major drivers for bryophyte distribution in a temperate montane ecosystem. Front Plant Sci 8:874. https://doi.org/10.3389/fpls.2017.00874
doi: 10.3389/fpls.2017.00874
pubmed: 28603535
pmcid: 5445162
Cox JE, Larson DW (1993) Environmental relations of the bryophytic and vascular components of a talus slope plant community. J Veg Sci 4:553–560. https://doi.org/10.2307/3236083
doi: 10.2307/3236083
DeLuca TB, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920. https://doi.org/10.1038/nature01051
doi: 10.1038/nature01051
pubmed: 12410308
DeLucia EH, Turnbull MH, Walcroft AS, Griffin K, Tissue DT, Glennym D, McSeveny TM, Whitehead D (2003) The contribution of bryophytes to the carbon exchange for a temperate rainforest. Glob Chang Biol 9:1158–1170. https://doi.org/10.1046/j.1365-2486.2003.00650.x
doi: 10.1046/j.1365-2486.2003.00650.x
Düll R (2010) Zeigerwerte der Moose. In: Ellenberg H, Leuschner C (eds) Vegetation Mitteleuropas mit den Alpen, 6th edn. Ulmer UTB, Stuttgart, pp 67–97
Equihua M, Usher M (1993) Impact of carpets of the invasive moss Campylopus introflexus on Calluna vulgaris regeneration. J Ecol 81(2):359–365. https://doi.org/10.2307/2261506
doi: 10.2307/2261506
Erfanzadeh R (2013) Impact of phanerogam and soil characteristics on bryophyte assemblages with respect to restoration practices (case study: IJzermonding, Belgium). Ecopersia 1(1):41–51
Fenton N, Lecomte N, Légaré S, Bergeron Y (2005) Paludification in black spruce (Picea mariana) forests of eastern Canada: potential factors and management implications. For Ecol Manag 213:151–159. https://doi.org/10.1016/j.foreco.2005.03.017
doi: 10.1016/j.foreco.2005.03.017
Gosselin M, Fourcin S, Dumas Y, Gosselin F, Korbulewsky N, Toïgo M, Vallet P (2017) Influence of forest tree species composition on bryophytic diversity in mixed and pure pine (Pinus sylvestris L.) and oak (Quercus petraea (Matt.) Liebl.) stands. For Ecol Manag 406:318–329. https://doi.org/10.1016/j.foreco.2017.09.067
doi: 10.1016/j.foreco.2017.09.067
Grytnes JA, Heegaard E, Ihlan PG (2006) Species richness of vascular plants, bryophytes and lichens along an altitudinal gradient in western Norway. Acta Oecol 29:241–246. https://doi.org/10.1016/j.actao.2005.10.007
doi: 10.1016/j.actao.2005.10.007
Gustafsson L, Fiskesjö A, Hallingbäck T, Ingelög T, Pettersson B (1992) Semi-natural deciduous broadleaved woods in southern Sweden—habitat factors of importance to some bryophyte species. Biol Cons 59(2–3):175–181. https://doi.org/10.1016/0006-3207(92)90579-C
doi: 10.1016/0006-3207(92)90579-C
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4(1):9
Hodgetts NG, Söderstörm L, Blockeel TL, Caspari S, Ignatov MS, Konstantinova NA et al (2020) An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. J Bryol 42(1):1–116. https://doi.org/10.1080/03736687.2019.1694329
doi: 10.1080/03736687.2019.1694329
Hofstede RGM, Wolf JHD, Benzing DH (1993) Epiphyte biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14:37–45
Horvat V, Heras P, García-Mijangos I, Biurrun I (2017) Intensive forest management affects bryophyte diversity in the western Pyrenean silver fir-beech forests. Biol Conserv 215:81–91. https://doi.org/10.1016/j.biocon.2017.09.007
doi: 10.1016/j.biocon.2017.09.007
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363
doi: 10.1002/bimj.200810425
pubmed: 18481363
Hylander K, Dynesius M (2006) Causes of the large variation in bryophyte species richness and composition among boreal streamside forest. J Veg Sci 17:333–346. https://doi.org/10.1111/j.1654-1103.2006.tb02453.x
doi: 10.1111/j.1654-1103.2006.tb02453.x
Ilić M, Igić R, Ćuk M, Vukov D (2018) Field sampling methods for investigating forest-floor bryophytes: microcoenose vs. random sampling. Arch Biol Sci 70(3):589–598. https://doi.org/10.2298/ABS180422020I
doi: 10.2298/ABS180422020I
Jongmans AG, van Breemen N, Gradstein SR, van Oort F (2001) How liverworts build hanging gardens from volcanic ash in Costa Rica. CATENA 44:13–22. https://doi.org/10.1016/S0341-8162(00)00151-X
doi: 10.1016/S0341-8162(00)00151-X
Kaufmann S, Hauck M, Leuschner C (2017) Comparing the plant diversity of paired beech primeval and production forests: management reduces cryptogam, but not vascular plant species richness. For Ecol Manag 400:58–67. https://doi.org/10.1016/j.foreco.2017.05.043
doi: 10.1016/j.foreco.2017.05.043
Kolari P, Pumpanen J, Kulmala L, Ilvesniemi H, Nikinmaa E, Grönholm T, Hari P (2006) Forest floor vegetation plays an important role in photosynthetic production of boreal forests. For Ecol Manag 221:241–248. https://doi.org/10.1016/j.foreco.2005.10.021
doi: 10.1016/j.foreco.2005.10.021
Lee D, La Roi GH (1979) Bryophyte and understory vascular plant beta diversity in relation to moisture and elevation gradients. Vegetatio 40:29–38
doi: 10.1007/BF00052012
Lozano-Parra J, Pulido M, Lozano-Fondón C, Schnabel S (2018) How do soil moisture and vegetation covers influence soil temperature in drylands of Mediterranean regions? Water 10:1747. https://doi.org/10.3390/w10121747
doi: 10.3390/w10121747
Márialigeti S, Németh B, Tinya F, Ódor P (2009) The effects of stand structure on ground-floor bryophyte assemblages in temperate mixed forests. Biodivers Conserv 18(8):2223–2241. https://doi.org/10.1007/s10531-009-9586-6
doi: 10.1007/s10531-009-9586-6
Martinez ML, Maun MA (1999) Responses of dune mosses to experimental burial by sand under natural and greenhouse conditions. Plant Ecol 145:209–219. https://doi.org/10.1023/A:1009850304137
doi: 10.1023/A:1009850304137
McMullan-Fisher SJM, Kirkpatrick JB, May TW, Pharo EJ (2010) Surrogates for macrofungi and mosses in reservation planning. Conserv Biol 24:730–736. https://doi.org/10.1111/j.1523-1739.2009.01378.x
doi: 10.1111/j.1523-1739.2009.01378.x
pubmed: 19961508
Mendiburu F, Yaseen M (2020) agricolae: statistical procedures for agricultural research. R package version 1.4. 0, https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae
Merrifield K, Ingham R (1998) Nematodes and other aquatic invertebrates in Eurhynchium oreganum from Mary’s Peak, Oregon Coast Range. Bryologist 101(4):505–511. https://doi.org/10.2307/3244525
doi: 10.2307/3244525
Meusel H, Jäger E, Weinert E (1965) Vergleichende Chorologie der Zentraleuropäischen Flora. Text und Kartenband, vol 1. Gustav Fischer Verlag, Jena
Meusel H, Jäger E, Rauschert S, Weinert E (1978) Vergleichende Chorologie der Zentraleuropäischen Flora. Text und Kartenband, vol 2. Gustav Fischer Verlag, Jena
Mežaka A, Brumelis G, Piterans A (2012) Tree and stand scale factors affecting richness and composition of epiphytic bryophytes and lichens in deciduous woodland key habitats. Biodivers Conserv 21:3221–3241. https://doi.org/10.1007/s10531-012-0361-8
doi: 10.1007/s10531-012-0361-8
Milić Č (1973) Fruška gora-geomorfološka proučavanja. Matica srpska, Odeljenje za prirodne nauke, Novi Sad
Mills SE, Macdonald SE (2004) Predictors of moss and liverwort species diversity of microsites in conifer-dominated boreal forest. J Veg Sci 15:189–198. https://doi.org/10.1111/j.1654-1103.2004.tb02254.x
doi: 10.1111/j.1654-1103.2004.tb02254.x
Morgan JW (2006) Bryophyte mats inhibit germination of non-native species in burnt temperate native grassland remnants. Biol Invasions 8:159–168. https://doi.org/10.1007/s10530-004-2881-y
doi: 10.1007/s10530-004-2881-y
Müller J, Boch S, Blaser S, Fischer M, Prati D (2015) Effects of forest management on bryophyte communities on deadwood. Nova Hedwigia 100:423–438. https://doi.org/10.1127/nova_hedwigia/2015/0242
doi: 10.1127/nova_hedwigia/2015/0242
Müller J, Boch S, Prati D, Socher SA, Pommer U, Hessenmöller D et al (2019) Effects of forest management on bryophyte species richness in Central European forests. For Ecol Manag 432:850–859. https://doi.org/10.1016/j.foreco.2018.10.019
doi: 10.1016/j.foreco.2018.10.019
Nelson C, Halpern C (2005) Short-term effects of timber harvest and forest edges on ground-layer mosses and liverworts. Canad J Bot 83(6):610–620. https://doi.org/10.1139/b05-036
doi: 10.1139/b05-036
Nihlgård B (1971) Pedological influence of spruce planted on former beech forest soils in Scania, South Sweden. Oicos 22(3):302–314. https://doi.org/10.2307/3543854
doi: 10.2307/3543854
O’Neill KP (2000) Role of bryophyte dominated ecosystems in the global carbon budget. In: Shaw AJ, Goffinet B (eds) Bryophyte biology, 1st edn. Cambridge University Press, Cambridge, pp 344–368
doi: 10.1017/CBO9781139171304.012
Ódor P, Király I, Tinya F, Bortignon F, Nascimbene J (2013) Patterns and drivers of species composition of epiphytic bryophytes and lichens in managed temperate forests. For Ecol Manag 306:256–265. https://doi.org/10.1016/j.foreco.2013.07.001
doi: 10.1016/j.foreco.2013.07.001
Peck JE (2006) Towards sustainable commercial moss harvest in the Pacific Northwest of North America. Biol Conserv 128:289–297. https://doi.org/10.1016/j.biocon.2005.10.001
doi: 10.1016/j.biocon.2005.10.001
Petrović J, Bugarski D, Ćurčić S, Bogdanović Ž (1973) Vode Fruške gore. Matica Srpska, Odeljenje za prirodne nauke, Novi Sad
Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. https://doi.org/10.1016/0022-5193(66)90013-0
doi: 10.1016/0022-5193(66)90013-0
Rambo TR, Muir PS (1998) Forest floor bryophytes of Pseudotsuga menziesii-Tsuga heterophylla stands in Oregon: influences of substrate and overstory. Bryologist 101(1):116–130. https://doi.org/10.2307/3244083
doi: 10.2307/3244083
Rieley J, Richards P, Bebbington A (1979) The ecological role of bryophytes in North Wales woodland. J Ecol 67:497–527. https://doi.org/10.2307/2259109
doi: 10.2307/2259109
Rydin H (2009) Population and community ecology of bryophytes. In: Goffinet B, Shaw JA (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 445–486
Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, Oxford
doi: 10.1093/acprof:oso/9780198528722.001.0001
Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423
doi: 10.1002/j.1538-7305.1948.tb01338.x
Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana
Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge
doi: 10.1017/CBO9781139627061
Spitale D (2017) Forest and substrate type drive bryophyte distribution in the Alps. J Bryol 39(2):128–140. https://doi.org/10.1080/03736687.2016.1274090
doi: 10.1080/03736687.2016.1274090
Steel JB, Wilson B, Anderson BJ, Lodge RHE, Tangney RS (2004) Are bryophyte communities different from higher-plant communities? Abundance relations. Oikos 104:479–486. https://doi.org/10.1111/j.0030-1299.2004.12840.x
doi: 10.1111/j.0030-1299.2004.12840.x
Stehn SE, Webster CR, Glime JM, Jenkins MA (2010) Ground layer Bryophyte communities of post-adelgid Picea-Abies forests. Southeast Nat 9(3):435–452. https://doi.org/10.1656/058.009.0303
doi: 10.1656/058.009.0303
Sveinbjörnsson B, Oechel WC (1992) Controls on growth and productivity of bryophytes: environmental limitations under current and anticipated conditions. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 77–102
Tinya F, Márialigeti S, Király I, Németh B, Ódor P (2009) The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Őrség, Western Hungary. Plant Ecol 204:69–81. https://doi.org/10.1007/s11258-008-9566-z
doi: 10.1007/s11258-008-9566-z
Vanderpoorten A, Goffinet B (2009) Introduction to bryophytes. Cambridge University Press, Cambridge
doi: 10.1017/CBO9780511626838
Vanderpoorten A, Papp B, Gradstein R (2010) Sampling of bryophytes. In: Eymann J, Degreef J, Häuser C, Monje JC, Samyn Y, Vandespiegel D (eds) Manual on field recording techniques and protocols for all taxa biodiversity inventories, vol 8. ABC Taxa, Belgium, pp 331–345
Vellak K, Ingerpuu N (2005) Management effects on bryophytes in Estonian forests. Biodivers Conserv 14:3255–3263. https://doi.org/10.1007/s10531-004-0445-1
doi: 10.1007/s10531-004-0445-1
Vellak K, Paal J, Liira J (2002) Diversity and distribution pattern of bryophytes and vascular plants in a boreal spruce forest. Silva Fenn 37(1):3–13. https://doi.org/10.14214/sf.508
doi: 10.14214/sf.508
Virtanen R, Johnston AE, Crawley MJ, Edwards GR (2000) Bryophyte biomass and species richness on the Park Grass Experiment, Rothamsted, UK. Plant Ecol 151:129–141. https://doi.org/10.1023/A:1026533418357
doi: 10.1023/A:1026533418357
Vitt DH, Wieder RK (2009) The structure and function of bryophyte dominated peatlands. In: Goffinet B, Shaw AJ (eds) Bryophyte biology, 2nd edn. Cambridge University Press, Cambridge, pp 357–391
Vitt DH, Li Y, Belland R (1995) Patterns of bryophyte diversity in peatlands of continental western Canada. Bryologist 98:218–227. https://doi.org/10.2307/3243306
doi: 10.2307/3243306
Vukov D, Galić Z, Rućando M, Ilić M, Ćuk M, Igić D, Igić R, Orlović S (2016) Effects of natural broadleaved regeneration vs conifer restoration on the herb layer and microclimate. Arch Biol Sci 68(3):483–493. https://doi.org/10.2298/ABS150727037V
doi: 10.2298/ABS150727037V
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York
doi: 10.1007/978-3-319-24277-4
Zamfir M, Dai X, van der Maarel E (1999) Bryophytes, lichens and phanerogams in an alvar grassland: relationships at different scales and contributions to plant community pattern. Ecography 22:40–52. https://doi.org/10.1111/j.1600-0587.1999.tb00453.x
doi: 10.1111/j.1600-0587.1999.tb00453.x