Plant NADPH-dependent thioredoxin reductases are crucial for the metabolism of sink leaves and plant acclimation to elevated CO
fluctuating light
metabolic regulation
plant acclimation to high CO2
redox metabolism
redox regulation
sink leaves
Journal
Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
revised:
05
05
2023
received:
09
08
2022
accepted:
13
05
2023
medline:
5
7
2023
pubmed:
2
6
2023
entrez:
2
6
2023
Statut:
ppublish
Résumé
Plants contain three NADPH-thioredoxin reductases (NTR) located in the cytosol/mitochondria (NTRA/B) and the plastid (NTRC) with important metabolic functions. However, mutants deficient in all NTRs remained to be investigated. Here, we generated and characterised the triple Arabidopsis ntrabc mutant alongside with ntrc single and ntrab double mutants under different environmental conditions. Both ntrc and ntrabc mutants showed reduced growth and substantial metabolic alterations, especially in sink leaves and under high CO
Substances chimiques
Arabidopsis Proteins
0
NADP
53-59-8
Carbon Dioxide
142M471B3J
Thioredoxin-Disulfide Reductase
EC 1.8.1.9
Thioredoxins
52500-60-4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2337-2357Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Beers, R.F. & Sizer, I.W. (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133-140.
Biddau, M., Bouchut, A., Major, J., Saveria, T., Tottey, J., Oka, O. et al. (2018) Two essential thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii. PLoS Pathogens, 14, e1006836.
Blanc, G., Barakat, A., Guyot, R., Cooke, R. & Delseny, M. (2000) Extensive duplication and reshuffling in the Arabidopsis genome. The Plant Cell, 12, 1093-1101.
Bourguignon, J., Neuburger, M. & Douce, R. (1988) Resolution and characterization of the glycine-cleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase. Biochemical Journal, 255, 169-178.
Bowles, A.M.C., Bechtold, U. & Paps, J. (2020) The origin of land plants is rooted in two bursts of genomic novelty. Current Biology, 30, 530-536.
Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R. et al. (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. The Plant Cell, 13, 1499-1510.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Burnett, A.C., Rogers, A., Rees, M. & Osborne, C.P. (2016) Carbon source-sink limitations differ between two species with contrasting growth strategies. Plant, Cell & Environment, 39, 2460-2472.
Calderón, A., Sánchez-Guerrero, A., Ortiz-Espín, A., Martínez-Alcalá, I., Camejo, D., Jiménez, A. et al. (2018) Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants. Physiologia Plantarum, 164, 251-267.
Cejudo, F.J., González, M.C. & Pérez-Ruiz, J.M. (2021) Redox regulation of chloroplast metabolism. Plant Physiology, 186, 9-21.
Cheng, C., Dong, Z., Han, X., Wang, H., Jiang, L., Sun, J. et al. (2017) Thioredoxin a is essential for motility and contributes to host infection of listeria monocytogenes via redox interactions. Frontiers in Cellular and Infection Microbiology, 7, 1-19.
Conrad, M., Jakupoglu, C., Moreno, S.G., Lippl, S., Banjac, A., Schneider, M. et al. (2004) Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Molecular and Cellular Biology, 24, 9414-9423.
Daloso, D.M., Müller, K., Obata, T., Florian, A., Tohge, T., Bottcher, A. et al. (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proceedings of the National Academy of Sciences, 112, E1392-E1400.
Elsässer, M., Feitosa-Araujo, E., Lichtenauer, S., Wagner, S., Fuchs, P., Giese, J. et al. (2020) Photosynthetic activity triggers pH and NAD redox signatures across different plant cell compartments. bioRxiv, 2020.10.31.363051.
Evans, M.C., Buchanan, B.B. & Arnon, D.I. (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences, 55, 928-934.
Fernie, A.R., Bachem, C.W.B., Helariutta, Y., Neuhaus, H.E., Prat, S., Ruan, Y.L. et al. (2020) Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. Nature Plants, 6, 55-66.
Fettke, J. & Fernie, A.R. (2015) Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism. Trends in Plant Science, 20, 490-497.
Florez-Sarasa, I., Obata, T., Del-Saz, N., Reichheld, J.-P., Meyer, E.H., Rodriguez-Concepcion, M. et al. (2019) The lack of mitochondrial thioredoxin TRXo1 affects in vivo alternative oxidase activity and carbon metabolism under different light conditions. Plant and Cell Physiology, 60, 2369-2381.
Da fonseca-Pereira, P., Daloso, D.M., Gago, J., De Oliveira Silva, F.M., Condori-Apfata, J.A., Florez-Sarasa, I. et al. (2019) The mitochondrial thioredoxin system contributes to the metabolic responses under drought episodes in arabidopsis. Plant and Cell Physiology, 60, 213-229.
Da fonseca-Pereira, P., Souza, P.V.L., Fernie, A.R., Timm, S., Daloso, D.M. & Araújo, W.L. (2021) Thioredoxin-mediated regulation of (photo)respiration and central metabolism. Journal of Experimental Botany, 72, 5987-6002.
da Fonseca-Pereira, P., Souza, P.V.L., Hou, L.-Y., Schwab, S., Geigenberger, P., Nunes-Nesi, A. et al. (2020) Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. Plant, Cell & Environment, 43, 188-208.
Foyer, C.H., Baker, A., Wright, M., Sparkes, I.A., Mhamdi, A., Schippers, J.H.M. et al. (2020) On the move: redox-dependent protein relocation in plants. Journal of Experimental Botany, 71, 620-631.
Foyer, C.H. & Noctor, G. (2020) Redox homeostasis and signaling in a Higher-CO2 world. Annual Review of Plant Biology, 71, 157-182.
Geigenberger, P., Thormählen, I., Daloso, D.M. & Fernie, A.R. (2017) The unprecedented versatility of the plant thioredoxin system. Trends in Plant Science, 22, 249-262.
Giannopolitis, C.N. & Ries, S.K. (1977) Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 59, 315-318.
Griffith, O.W. (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106, 207-212.
Hara, S., Motohashi, K., Arisaka, F., Romano, P.G.N., Hosoya-Matsuda, N., Kikuchi, N. et al. (2006) Thioredoxin-h1 reduces and reactivates the oxidized cytosolic malate dehydrogenase dimer in higher plants. Journal of Biological Chemistry, 281, 32065-32071.
Hashida, S.N., Miyagi, A., Nishiyama, M., Yoshida, K., Hisabori, T. & Kawai-Yamada, M. (2018) Ferredoxin/thioredoxin system plays an important role in the chloroplastic NADP status of Arabidopsis. The Plant Journal: For Cell and Molecular Biology, 95, 947-960.
Havir, E.A. & McHale, N.A. (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84, 450-455.
Hendriks, J.H.M., Kolbe, A., Gibon, Y., Stitt, M. & Geigenberger, P. (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of arabidopsis and other plant species. Plant Physiology, 133, 838-849.
Hou, L.-Y., Lehmann, M. & Geigenberger, P. (2021) Thioredoxin h2 and o1 show different subcellular localizations and redox-active functions, and are extrachloroplastic factors influencing photosynthetic performance in fluctuating light. Antioxidants, 10, 705.
Huang, J., Niazi, A.K., Young, D., Rosado, L.A., Vertommen, D., Bodra, N. et al. (2017) Self-protection of cytosolic malate dehydrogenase against oxidative stress in Arabidopsis. Journal of Experimental Botany, 69, 3491-3505.
Jakupoglu, C., Przemeck, G.K.H., Schneider, M., Moreno, S.G., Mayr, N., Hatzopoulos, A.K. et al. (2005) Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Molecular and Cellular Biology, 25, 1980-1988.
Jonik, C., Sonnewald, U., Hajirezaei, M.R., Flügge, U.I. & Ludewig, F. (2012) Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnology Journal, 10, 1088-1098.
Kambhampati, S., Ajewole, E. & Marsolais, F. (2017) Advances in asparagine metabolism, Progress in Botany. Springer, pp. 49-74.
Kampfenkel, K., Van Montagu, M. & Inze, D. (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry, 225, 165-167.
Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E. et al. (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics, 21, 1635-1638.
Laloi, C., Rayapuram, N., Chartier, Y., Grienenberger, J.-M., Bonnard, G. & Meyer, Y. (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proceedings of the National Academy of Sciences, 98, 14144-14149.
Lampl, N., Lev, R., Nissan, I., Gilad, G., Hipsch, M. & Rosenwasser, S. (2022) Systematic monitoring of 2-Cys peroxiredoxin-derived redox signals unveiled its role in attenuating carbon assimilation rate. Proceedings of the National Academy of Sciences, 119, 1-10.
Lea, P.J., Sodek, L., Parry, M.A.J., Shewry, P.R. & Halford, N.G. (2007) Asparagine in plants. Annals of Applied Biology, 150, 1-26.
Lima, V.F., Erban, A., Daubermann, A.G., Freire, F.B.S., Porto, N.P., Cândido-Sobrinho, S.A. et al. (2021) Establishment of a GC-MS-based 13C-positional isotopomer approach suitable for investigating metabolic fluxes in plant primary metabolism. The Plant Journal, 108, 1213-1233.
Lintala, M., Schuck, N., Thormählen, I., Jungfer, A., Weber, K.L., Weber, A.P.M. et al. (2014) Arabidopsis tic62 trol mutant lacking thylakoid-bound ferredoxin-NADP+ oxidoreductase shows distinct metabolic phenotype. Molecular Plant, 7, 45-57.
Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. & Fernie, A.R. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387-396.
López-Grueso, M., González-Ojeda, R., Requejo-Aguilar, R., McDonagh, B., Fuentes-Almagro, C., Muntané, J. et al. (2019) Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches. Redox Biology, 21, 101049.
Luedemann, A., Strassburg, K., Erban, A. & Kopka, J. (2008) TagFinder for the quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics, 24, 732-737.
Ma, J., Wang, S., Zhu, X., Sun, G., Chang, G., Li, L. et al. (2022) Major episodes of horizontal gene transfer drove the evolution of land plants. Molecular Plant, 15, 857-871.
Martí, M.C., Jiménez, A. & Sevilla, F. (2020) Thioredoxin network in plant mitochondria: cysteine S-posttranslational modifications and stress conditions. Frontiers in Plant Science, 11, 1-20.
Marty, L., Bausewein, D., Müller, C., Bangash, S.A.K., Moseler, A., Schwarzländer, M. et al. (2019) Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems. New Phytologist, 224, 1569-1584.
Marty, L., Siala, W., Schwarzländer, M., Fricker, M.D., Wirtz, M., Sweetlove, L.J. et al. (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proceedings of the National Academy of Sciences, 106, 9109-9114.
Meyer, A.J., Dreyer, A., Ugalde, J.M., Feitosa-Araujo, E., Dietz, K.J. & Schwarzländer, M. (2021) Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants - and where to go next. Biological Chemistry, 402, 399-423.
Meyer, Y., Buchanan, B.B., Vignols, F. & Reichheld, J.-P. (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annual Review of Genetics, 43, 335-367.
Mhamdi, A. & Noctor, G. (2016) High CO2 primes plant biotic stress defences through redox-linked pathways. Plant Physiology, 172(2), 929-942.
Michalska, J., Zauber, H., Buchanan, B.B., Cejudo, F.J. & Geigenberger, P. (2009) NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proceedings of the National Academy of Sciences, 106, 9908-9913.
Modde, K., Timm, S., Florian, A., Michl, K., Fernie, A.R. & Bauwe, H. (2017) High serine:Glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in arabidopsis. Journal of Experimental Botany, 68, 643-656.
Monroe, J.G., Srikant, T., Carbonell-Bejerano, P., Becker, C., Lensink, M., Exposito-Alonso, M. et al. (2022) Mutation bias reflects natural selection in Arabidopsis thaliana. Nature, 602, 101-105.
Munné-Bosch, S., Queval, G. & Foyer, C.H. (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiology, 161, 5-19.
Muri, J., Heer, S., Matsushita, M., Pohlmeier, L., Tortola, L., Fuhrer, T. et al. (2018) The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nature Communications, 9, 1851.
Møller, I.M., Igamberdiev, A.U., Bykova, N.V., Finkemeier, I., Rasmusson, A.G. & Schwarzländer, M. (2020) Matrix redox physiology governs the regulation of plant mitochondrial metabolism through posttranslational protein modifications. The Plant Cell, 32, 573-594.
Nakano, Y. & Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, 867-880.
Nietzel, T., Mostertz, J., Ruberti, C., Née, G., Fuchs, P., Wagner, S. et al. (2020) Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proceedings of the National Academy of Sciences, 117, 741-751.
Ojeda, V., Pérez-Ruiz, J.M., González, M., Nájera, V.A., Sahrawy, M., Serrato, A.J. et al. (2017) NADPH thioredoxin reductase C and thioredoxins act concertedly in seedling development. Plant Physiology, 174, 1436-1448.
Pang, Z., Chong, J., Zhou, G., de Lima Morais, D.A., Chang, L., Barrette, M. et al. (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49, W388-W396.
Reichheld, J.-P., Khafif, M., Riondet, C., Droux, M., Bonnard, G. & Meyer, Y. (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. The Plant Cell, 19, 1851-1865.
Reichheld, J.P., Meyer, E., Khafif, M., Bonnard, G. & Meyer, Y. (2005) AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Letters, 579, 337-342.
Reinholdt, O., Bauwe, H., Hagemann, M. & Timm, S. (2019a) Redox-regulation of mitochondrial metabolism through thioredoxin o1 facilitates light induction of photosynthesis. Plant Signaling & Behavior, 14, 1674607.
Reinholdt, O., Schwab, S., Zhang, Y., Reichheld, J.P., Fernie, A.R., Hagemann, M. et al. (2019b) Redox-regulation of photorespiration through mitochondrial thioredoxin O1. Plant Physiology, 181, 442-457.
Ren, R., Wang, H., Guo, C., Zhang, N., Zeng, L., Chen, Y. et al. (2018) Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Molecular Plant, 11, 414-428.
Scheibe, R. (1987) NADP+-malate dehydrogenase in C3-plants: regulation and role of a light-activated enzyme. Physiologia Plantarum, 71, 393-400.
Scheibe, R. & Anderson, L.E. (1981) Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 636, 58-64.
Schertl, P. & Braun, H.P. (2014) Respiratory electron transfer pathways in plant mitochondria. Frontiers in Plant Science, 5, 1-11.
Serrato, A.J., Pérez-Ruiz, J.M., Spínola, M.C. & Cejudo, F.J. (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. Journal of Biological Chemistry, 279, 43821-43827.
Sharkey, T.D. (2016) What gas exchange data can tell us about photosynthesis. Plant, Cell & Environment, 39, 1161-1163.
Sieciechowicz, K.A., Joy, K.W. & Ireland, R.J. (1988) The metabolism of asparagine in plants. Phytochemistry, 27, 663-671.
Smirnoff, N. & Arnaud, D. (2019) Hydrogen peroxide metabolism and functions in plants. New Phytologist, 221, 1197-1214.
Smith, E.N., Schwarzländer, M., Ratcliffe, R.G. & Kruger, N.J. (2021) Shining a light on NAD- and NADP-based metabolism in plants. Trends in Plant Science, 26, 1072-1086.
Sousa, R.H.V., Carvalho, F.E.L., Lima-Melo, Y., Alencar, V.T.C.B., Daloso, D.M., Margis-Pinheiro, M. et al. (2019) Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. Journal of Experimental Botany, 70, 627-639.
Sousa, R.H.V., Carvalho, F.E.L., Ribeiro, C.W., Passaia, G., Cunha, J.R. & Lima-Melo, Y. et al. (2015) Peroxisomal APX knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory H2O2 induced by CAT deficiency in rice. Plant, Cell & Environment, 38, 499-513.
Souza, P.V.L., Lima-Melo, Y., Carvalho, F.E., Reichheld, J.P., Fernie, A.R., Silveira, J.A.G. et al. (2019) Function and compensatory mechanisms among the components of the chloroplastic redox network. Critical Reviews in Plant Sciences, 38, 1-28.
Steinbeck, J., Fuchs, P., Negroni, Y.L., Elsässer, M., Lichtenauer, S., Stockdreher, Y. et al. (2020) In vivo NADH/NAD+bosensing reveals the dynamics of cytosolic redox metabolism in plants. The Plant Cell, 32, 3324-3345.
Ta, T.C. & Joy, K.W. (1986) Metabolism of some amino acids in relation to the photorespiratory nitrogen cycle of pea leaves. Planta, 169, 117-122.
Ta, T.C., Joy, K.W. & Ireland, R.J. (1985) Role of asparagine in the photorespiratory nitrogen metabolism of pea leaves. Plant Physiology, 78, 334-337.
Taira, M., Valtersson, U., Burkhardt, B. & Ludwig, R.A. (2004) Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. The Plant Cell, 16, 2048-2058.
Thormählen, I., Meitzel, T., Groysman, J., Öchsner, A.B., Von Roepenack-Lahaye, E. & Naranjo, B. et al. (2015) Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiology, 169, 1766-1786.
Thormählen, I., Zupok, A., Rescher, J., Leger, J., Weissenberger, S., Groysman, J. et al. (2017) Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light. Molecular Plant, 10, 168-182.
Timm, S. & Bauwe, H. (2013) The variety of photorespiratory phenotypes - employing the current status for future research directions on photorespiration. Plant Biology (Stuttg), 15, 737-747.
Timm, S., Florian, A., Arrivault, S., Stitt, M., Fernie, A.R. & Bauwe, H. (2012) Glycine decarboxylase controls photosynthesis and plant growth. FEBS Letters, 586, 3692-3697.
Timm, S. & Hagemann, M. (2020) Photorespiration - how is it regulated and regulates overall plant metabolism? Journal of Experimental Botany, 17(14), 3955-3965.
Timm, S., Wittmiß, M., Gamlien, S., Ewald, R., Florian, A., Frank, M. et al. (2015) Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. The Plant Cell, 27, 1968-1984.
Ugalde, J.M., Fuchs, P., Nietzel, T., Cutolo, E.A., Homagk, M. & Vothknecht, U.C. et al. (2021) Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. Plant Physiology, 186, 125-141.
Wingler, A., Lea, P.J., Quick, W.P. & Leegood, R.C. (2000) Photorespiration: metabolic pathways and their role in stress protection Photorespiration: metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society B: Biological Sciences, 355(1402), 1517-1529.
Yoshida, K. & Hisabori, T. (2016a) Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proceedings of the National Academy of Sciences, 113, E3967-E3976.
Yoshida, K. & Hisabori, T. (2016b) Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana. Biochimica et Biophysica Acta - Bioenergetics, 1857, 810-818.
Zhao, Y., Yu, H., Zhou, J.M., Smith, S.M. & Li, J. (2020) Malate circulation: llinking chloroplast metabolism to mitochondrial ROS. Trends in Plant Science, 25, 446-454.
Zhou, M., Diwu, Z., Panchuk-voloshina, N. & Haugland, R.P. (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Analytical Biochemistry, 253, 162-168.