Ultramicroextraction as a miniaturization of the already miniaturized. A step toward nanoextraction and beyond.
downscaling
green analytical chemistry
miniaturization
sample preparation
ultramicroextraction
Journal
Journal of separation science
ISSN: 1615-9314
Titre abrégé: J Sep Sci
Pays: Germany
ID NLM: 101088554
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
revised:
10
05
2023
received:
05
04
2023
accepted:
11
05
2023
medline:
3
6
2023
pubmed:
3
6
2023
entrez:
3
6
2023
Statut:
ppublish
Résumé
Miniaturization of the analytical process has been a widespread trend, and the sample preparation stage is not exempted from this downscaling. Since the introduction of microextraction techniques as miniaturization of classical extraction techniques, they have become one of the strengths in this field. However, some of the original approaches to these techniques did not fully cover all the current principles of Green Analytical Chemistry. For this reason, during the last years, much emphasis has been placed on reducing/eliminating toxic reagents, reducing the amount of the extraction phase, and searching for new greener, and more selective extractant materials. On the other hand, even though high accomplishments have been achieved, the same attention has not always been paid to reducing the amount of sample, which is essential when treating low-availability samples such as biological samples, or in developing portable devices. In this review, we intend to give the readership an overview of the advances toward further miniaturization of microextraction techniques. Finally, a brief reflection is made on the terminology used, or that should, in our opinion, be used to term these new generation of miniaturized microextraction approaches. To this regard, the term, 'ultramicroextraction' is proposed to refer to those approaches beyond microextraction.
Identifiants
pubmed: 37269204
doi: 10.1002/jssc.202300223
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2300223Subventions
Organisme : Spanish Ministry of Science and Innovation
ID : PID2020-118924RB-I00
Informations de copyright
© 2023 The Authors. Journal of Separation Science published by Wiley-VCH GmbH.
Références
Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem. 2013;50:78-4.
Nowak PM, Wietecha-Posłuszny R, Pawliszyn J. White analytical chemistry: an approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC - Trends Anal Chem. 2021;138:116223.
Agrawal A, Keçili R, Ghorbani-Bidkorbeh F, Hussain CM. Green miniaturized technologies in analytical and bioanalytical chemistry. TrAC Trends Anal Chem. 2021;143:116383.
López-Lorente ÁI, Pena-Pereira F, Pedersen-Bjergaard S, Zuin VG, Ozkan SA, Psillakis E. The ten principles of green sample preparation. TrAC Trends Anal Chem. 2022;148:116530.
Pena-Pereira F. From conventional to miniaturized analytical systems. Miniaturization in sample preparation. Berlin; De Gruyter Open Ltd; 2014. pp. 1-28.
Tankiewicz M, Fenik J, Biziuk M. Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review. Talanta. 2011;86:8-22.
Ríos Á, Escarpa A, Simonet B. Miniaturization in analytical chemistry. Miniaturization of analytical systems. Chichester: John Wiley & Sons, Ltd; 2009. pp. 1-38.
Pawliszyn J. Why move analysis from laboratory to on-site? TrAC Trends Anal Chem. 2006;25:633-4.
Keçili R, Hussain CM. Green micro total analysis systems (GμTAS) for environmental samples. Trends Environ Anal Chem. 2021;31:e00128.
Kordzadeh-Kermani V, Madadelahi M, Ashrafizadeh SN, Kulinsky L, Martinez-Chapa SO, Madou MJ. Electrified lab on disc systems: a comprehensive review on electrokinetic applications. Biosens Bioelectron. 2022;214:114381.
Dkhar DS, Kumari R, Malode SJ, Shetti NP, Chandra P. Integrated lab-on-a-chip devices: fabrication methodologies, transduction system for sensing purposes. J Pharm Biomed Anal. 2023;223:115120.
Poole C, Mester Z, Miró M, Pedersen-Bjergaard S, Pawliszyn J. Glossary of terms used in extraction (IUPAC Recommendations 2016). Pure Appl Chem. 2016;88:517-58.
Lucena R, Cárdenas MS. Analytical sample preparation with nano- and other high-performance materials. Amsterdam: Elsevier; 2021.
Kaykhaii M, Hashemi SH. Miniaturized solid phase extraction. In: Dalu T, Tavengwa NT, editors. Emerging freshwater pollutants. Amsterdam: Elsevier; 2022. pp. 49-61.
Kebede TG, Nety SS, Dube S, Nindi MM. The miniaturization of liquid-phaseextraction techniques. In: Dalu T, Tavengwa NT, editors. Emerging freshwater pollutants. Amsterdam: Elsevier; 2022. pp. 63-93.
Yamini Y, Rezazadeh M, Seidi S. Liquid-phase microextraction - The different principles and configurations. TrAC - Trends Anal Chem. 2019;112:264-72.
Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem. 1990;62:2145-8.
Pawliszyn J. Solid Phase Microextraction: Theory and Practice. New York: Wiley-VCH Verlag; 1997.
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacl E, Bojko B, et al. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem. 2018;90:302-60.
Piri-Moghadam H, Alam MN, Pawliszyn J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal Chim Acta. 2017;984:42-65.
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem. 2023;95:218-37.
Bruheim I, Liu X, Pawliszyn J. Thin-film microextraction. Anal Chem. 2003;75:1002-10.
Pacenti M, Dugheri S, Traldi P, Degli Esposti F, Perchiazzi N, Franchi E, et al. New automated and high-throughput quantitative analysis of urinary ketones by multifiber exchange-solid phase microextraction coupled to fast gas chromatography/negative Chemical-Electron Ionization/Mass Spectrometry. J Autom Methods Manag Chem. 2010;2010:972926.
Vazquez L, Celeiro M, Sergazina M, Dagnac T, Llompart M. Optimization of a miniaturized solid-phase microextraction method followed by gas chromatography mass spectrometry for the determination of twenty four volatile and semivolatile compounds in honey from Galicia (NW Spain) and foreign countries. Sustain Chem Pharm. 2021;21:100451.
Gómez-Ríos GA, Reyes-Garcés N, Bojko B, Pawliszyn J. Biocompatible Solid-Phase Microextraction Nanoelectrospray Ionization: An Unexploited Tool in Bioanalysis. Anal Chem. 2016;88:1259-65.
Boyaci E, Bojko B, Reyes-Garcés N, Poole JJ, Gómez-Ríos GA, Teixeira A, et al. High-throughput analysis using non-depletive SPME: challenges and applications to the determination of free and total concentrations in small sample volumes. Sci Reports. 2018;8:1167.
Piri-Moghadam H, Ahmadi F, Gómez-Ríos GA, Boyacı E, Reyes-Garcés N, Aghakhani A, et al. Fast Quantitation of Target Analytes in Small Volumes of Complex Samples by Matrix-Compatible Solid-Phase Microextraction Devices. Angew Chemie Int Ed. 2016;55:7510-4.
Eisert R, Pawliszyn J. Automated In-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. Anal Chem. 1997;69:3140-7.
Costa Queiroz ME, Donizeti de Souza I, Marchioni C. Current advances and applications of in-tube solid-phase microextraction. TrAC - Trends Anal Chem. 2019;111:261-78.
Moliner-Martinez Y, Herráez-Hernández R, Verdú-Andrés J, Molins-Legua C, Campíns-Falcó P. Recent advances of in-tube solid-phase microextraction. TrAC - Trends Anal Chem. 2015;71:205-13.
Piri-Moghadam H, Lendor S, Pawliszyn J. Development of a biocompatible in-tube solid-phase microextraction device: A sensitive approach for direct analysis of single drops of complex matrixes. Anal Chem. 2016;88:12188-95.
Vejar-Vivar C, Millán-Santiago J, Mardones C, Lucena R, Cárdenas S. Polydopamine inner wall-coated hypodermic needle as microextraction device and electrospray emitter for the direct analysis of illicit drugs in oral fluid by ambient mass spectrometry. Talanta. 2022;249:123693.
Baltussen E, Sandra P, David F, Cramers C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep. 1999;11:737-47.
Neng NR, Silva ARM, Nogueira JMF. Adsorptive micro-extraction techniques-Novel analytical tools for trace levels of polar solutes in aqueous media. J Chromatogr A. 2010;1217:7303-10.
Richter P, Leiva C, Choque C, Giordano A, Sepúlveda B. Rotating-disk sorptive extraction of nonylphenol from water samples. J Chromatogr A. 2009;1216:8598-602.
Luo YB, Ma Q, Feng YQ. Stir rod sorptive extraction with monolithic polymer as coating and its application to the analysis of fluoroquinolones in honey sample. J Chromatogr A. 2010;1217:3583-9.
Huang X, Chen L, Lin F, Yuan D. Novel extraction approach for liquid samples: Stir cake sorptive extraction using monolith. J Sep Sci. 2011;34:2145-51.
Alcudia-León MC, Lucena R, Cárdenas S, Valcárcel M. Stir membrane extraction: A useful approach for liquid sample pretreatment. Anal Chem. 2009;81:8957-61.
Camino-Sánchez FJ, Rodríguez-Gómez R, Zafra-Gómez A, Santos-Fandila A, Vílchez JL. Stir bar sorptive extraction: Recent applications, limitations and future trends. Talanta. 2014;130:388-99.
Casado-Carmona FA, Lucena R, Cárdenas S. Magnetic paper-based sorptive phase for enhanced mass transference in stir membrane environmental samplers. Talanta. 2021;228:122217.
Wang Y, Zhang J, Huang X, Yuan D. Preparation of stir cake sorptive extraction based on polymeric ionic liquid for the enrichment of benzimidazole anthelmintics in water, honey and milk samples. Anal Chim Acta. 2014;840:33-41.
Manzo V, Miró M, Richter P. Programmable flow-based dynamic sorptive microextraction exploiting an octadecyl chemically modified rotating disk extraction system for the determination of acidic drugs in urine. J Chromatogr A. 2014;1368:64-9.
Fan W, Mao X, He M, Chen B, Hu B. Stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet/inductively coupled plasma mass spectrometry for analysis of thyroxine in urine samples. J Chromatogr A. 2013;1318:49-57.
Almeida C, Nogueira JMF. Determination of steroid sex hormones in real matrices by bar adsorptive microextraction (BAμE). Talanta. 2015;136:145-54.
Unceta N, Ugarte A, Sánchez A, Gómez-Caballero A, Goicolea MA, Barrio RJ. Development of a stir bar sorptive extraction based HPLC-FLD method for the quantification of serotonin reuptake inhibitors in plasma, urine and brain tissue samples. J Pharm Biomed Anal. 2010;51:178-85.
Kumar R, Gaurav H, Malik AK, Kabir A, Furton KG. Efficient analysis of selected estrogens using fabric phase sorptive extraction and high performance liquid chromatography-fluorescence detection. J Chromatogr A. 2014;1359:16-25.
Kabir A, Mesa R, Jurmain J, Furton KG. Fabric phase sorptive extraction explained. Separations. 2017;4:21.
Locatelli M, Tartaglia A, D'Ambrosio F, Ramundo P, Ulusoy HI, Furton KG, et al. Biofluid sampler: A new gateway for mail-in-analysis of whole blood samples. J Chromatogr B. 2020;1143:122055.
Locatelli M, Furton KG, Tartaglia A, Sperandio E, Ulusoy HI, Kabir A. An FPSE-HPLC-PDA method for rapid determination of solar UV filters in human whole blood, plasma and urine. J Chromatogr B. 2019;1118-1119:40-50.
Chisvert A, Cárdenas S, Lucena R. Dispersive micro-solid phase extraction. TrAC - Trends Anal Chem. 2019;112:226-33.
Di S, Ning T, Yu J, Chen P, Yu H, Wang J, et al. Recent advances and applications of magnetic nanomaterials in environmental sample analysis. TrAC - Trends Anal Chem. 2020;126:115864.
Piramoon S, Aberoomand Azar P, Saber Tehrani M, Mohammadiazar S, Tavassoli A. Solid-phase nanoextraction of polychlorinated biphenyls in water and their determination by gas chromatography with electron capture detector. J Sep Sci. 2017;40:449-57.
Wang H, Campiglia AD. Determination of polycyclic aromatic hydrocarbons in drinking water samples by solid-phase nanoextraction and high-performance liquid chromatography. Anal Chem. 2008;80:8202-9.
Bahia PVB, Nascimento MM, de Andrade JB, Machado ME. Microscale solid-liquid extraction: A green alternative for determination of n-alkanes in sediments. J Chromatogr A. 2022;1685:463635.
Grau J, Benedé JL, Chisvert A, Salvador A. Modified magnetic-based solvent-assisted dispersive solid-phase extraction: application to the determination of cortisol and cortisone in human saliva. J Chromatogr A. 2021;1652:462361.
Benedé JL, Chisvert A, Giokas DL, Salvador A. Development of stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles and its analytical application to the determination of hydrophobic organic compounds in aqueous media. J Chromatogr A. 2014;1362:25-33.
Vállez-Gomis V, Grau J, Benedé JL, Giokas DL, Chisvert A, Salvador A. Fundamentals and applications of stir bar sorptive dispersive microextraction: A tutorial review. Anal Chim Acta. 2021;1153:338271.
Azorín C, Benedé JL, Chisvert A. New challenges in sample preparation: Miniaturized stir bar sorptive dispersive microextraction as a high-throughput and feasible approach for low-availability sample preparation. Anal Chim Acta. 2023;1238:340627.
Yang AY, Sun L, Musson DG, Zhao JJ. Application of a novel ultra-low elution volume 96-well solid-phase extraction method to the LC/MS/MS determination of simvastatin and simvastatin acid in human plasma. J Pharm Biomed Anal. 2005;38:521-7.
Moein MM, Abdel-Rehim A, Abdel-Rehim M. Microextraction by packed sorbent (MEPS). TrAC - Trends Anal Chem. 2015;67:34-44.
Seidi S, Tajik M, Baharfar M, Rezazadeh M. Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: Miniaturized concepts for chromatographic analysis. TrAC - Trends Anal Chem. 2019;118:810-27.
Abdel-Rehim M, Skansen P, Vita M, Hassan Z, Blomberg L, Hassan M. Microextraction in packed syringe/liquid chromatography/electrospray tandem mass spectrometry for quantification of olomoucine in human plasma samples. Anal Chim Acta. 2005;539:35-9.
Amini S, Ebrahimzadeh H, Seidi S, Jalilian N. Polyacrylonitrile/MIL-53(Fe) electrospun nanofiber for pipette-tip micro solid phase extraction of nitrazepam and oxazepam followed by HPLC analysis. Microchim Acta. 2020;187:152.
Carasek E, Morés L, Huelsmann RD. Disposable pipette extraction: A critical review of concepts, applications, and directions. Anal Chim Acta. 2022;1192:339383.
Shajahan A, Supekar N, Heiss C, Azadi P. High-Throughput Automated Micro-permethylation for Glycan Structure Analysis. Anal Chem. 2019;91:1237-40.
Bordin DCM, Alves MNR, De Campos EG, De Martinis BS. Disposable pipette tips extraction: Fundamentals, applications and state of the art. J Sep Sci. 2016;39:1168-72.
Wang N, Xin H, Zhang Q, Jiang Y, Wang X, Shou D, et al. Carbon nanotube-polymer composite for effervescent pipette tip solid phase microextraction of alkaloids and flavonoids from Epimedii herba in biological samples. Talanta. 2017;162:10-8.
Grau J, Benedé JL, Chisvert A, Salvador A. A high-throughput magnetic-based pipette tip microextraction as an alternative to conventional pipette tip strategies: Determination of testosterone in human saliva as a proof-of-concept. Anal Chim Acta. 2022;1221:340117.
Grau J, Moreno-Guzmán M, Arruza L, López MÁ, Escarpa A, Chisvert A. Analysis of microsamples by miniaturized magnetic-based pipette tip microextraction: determination of free cortisol in serum and urine from very low birth weight preterm newborns. Analyst. 2023;148:1050-7.
Calderilla C, Maya F, Leal LO, Cerdà V. Recent advances in flow-based automated solid-phase extraction. TrAC - Trends Anal. Chem. 2018;108:370-80.
Fernandes SR, Barreiros L, Sá P, Miró M, Segundo MA. Automatic and renewable micro-solid-phase extraction based on bead injection lab-on-valve system for determination of tranexamic acid in urine by UHPLC coupled with tandem mass spectrometry. Anal Bioanal Chem. 2022;414:649-59.
Wang H, Cocovi-Solberg DJ, Hu B, Miró M. 3D-Printed Microflow Injection Analysis Platform for Online Magnetic Nanoparticle Sorptive Extraction of Antimicrobials in Biological Specimens as a Front End to Liquid Chromatographic Assays. Anal Chem. 2017;89:12541-9.
Zhang J, Chen B, Wang H, Huang X, He M, Hu B. Chip-based monolithic microextraction combined with ICP-MS for the determination of bismuth in HepG2 cells. J Anal At Spectrom. 2016;31:1391-9.
Miró M. On-chip microsolid-phase extraction in a disposable sorbent format using mesofluidic platforms. TrAC - Trends Anal Chem. 2014;62:154-61.
Barker SA, Long AR, Short CR. Isolation of drug residues from tissues by solid phase dispersion. J Chromatogr A. 1989;475:353-61.
Wianowska D, Gil M. New insights into the application of MSPD in various fields of analytical chemistry. TrAC - Trends Anal Chem. 2019;112:29-51.
Celeiro M, Vazquez L, Lamas JP, Vila M, Garcia-Jares C, Llompart M. Miniaturized Matrix Solid-Phase Dispersion for the Analysis of Ultraviolet Filters and Other Cosmetic Ingredients in Personal Care Products. Separations. 2019;6:30.
Chu C, Jiang L, Mao H, Yan J. A simple and environmentally-friendly method by pipette-tip matrix solid-phase dispersion microextraction coupled with high-performance liquid chromatography for the simultaneous determination of lignans and terpenes. Sustain Chem Pharm. 2021;20:100384.
Rajabi M, Sabzalian S, Barfi B, Arghavani-Beydokhti S, Asghari A. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices. J Chromatogr A. 2015;1425:42-50.
Sonker M, Sahore V, Woolley AT. Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: A critical review. Anal Chim Acta. 2017;986:1-11.
daSoares S Burato J, Vargas Medina DA, de Toffoli AL, Vasconcelos Soares Maciel E, Mauro Lanças F. Recent advances and trends in miniaturized sample preparation techniques. J Sep Sci. 2020;43:202-25.
Ramos-Payán M. Liquid - Phase microextraction and electromembrane extraction in millifluidic devices:A tutorial. Anal Chim Acta. 2019;1080:12-21.
Xu C, Xie T. Review of Microfluidic Liquid-Liquid Extractors. Ind Eng Chem Res. 2017;56:7593-622.
Wang K, Luo G. Microflow extraction: A review of recent development. Chem Eng Sci. 2017;169:18-33.
Alexovič M, Horstkotte B, Solich P, Sabo J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation. Anal Chim Acta. 2016;906:22-40.
Wang X, Yi L, Mukhitov N, Schrell AM, Dhumpa R, Roper MG. Microfluidics-to-mass spectrometry: A review of coupling methods and applications. J Chromatogr A. 2015;1382:98-116.
Ciceri D, Perera JM, Stevens GW. The use of microfluidic devices in solvent extraction. J Chem Technol Biotechnol. 2014;89:771-86.
Cocovi-Solberg DJ, Worsfold PJ, Miró M. Opportunities for 3D printed millifluidic platforms incorporating on-line sample handling and separation. TrAC - Trends Anal Chem. 2018;108:13-22.
Beauchamp MJ, Nordin GP, Woolley AT. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal Bioanal Chem. 2017;409:4311-9.
Jeannot MA, Cantwell FF. Solvent microextraction into a single drop. Anal Chem. 1996;68:2236-40.
He Y, Lee HK. Liquid-Phase Microextraction in a Single Drop of Organic Solvent by Using a Conventional Microsyringe. Anal Chem. 1997;69:4634-40.
Liu H, Dasgupta PK. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal Chem. 1996;68:1817-21.
Wu HF, Yen JH, Chin CC. Combining drop-to-drop solvent microextraction with gas chromatography/mass spectrometry using electronic ionization and self-ion/molecule reaction method to determine methoxyacetophenone isomers in one drop of water. Anal Chem. 2006;78:1707-12.
Shrivas K, Patel DK. Quantitative determination of nicotinic acid in micro liter volume of urine sample by drop-to-drop solvent microextraction coupled to matrix assisted laser desorption/ionization mass spectrometry. Spectrochim Acta Part A Mol Biomol Spectrosc. 2011;78:253-7.
Shrivas K, Patel DK. Matrix-assisted laser desorption/ionization mass spectrometry for quantitative determination of β-blocker drugs in one-drop of human serum sample. J Chromatogr B. 2011;879:35-40.
Sun WH, Wei Y, Guo XL, Wu Q, Di X, Fang Q. Nanoliter-Scale Droplet-Droplet Microfluidic Microextraction Coupled with MALDI-TOF Mass Spectrometry for Metabolite Analysis of Cell Droplets. Anal Chem. 2020;92:8759-67.
Liu W, Lee HK. Continuous-flow microextraction exceeding 1000-fold concentration of dilute analytes. Anal Chem. 2000;72:4462-7.
Xia L, Hu B, Jiang Z, Wu Y, Liang Y. Single-drop microextraction combined with low-temperature electrothermal vaporization ICPMS for the determination of trace Be, Co, Pd, and Cd in biological samples. Anal Chem. 2004;76:2910-5.
Yangcheng L, Quan L, Guangsheng L, Youyuan D. Directly suspended droplet microextraction. Anal Chim Acta. 2006;566:259-64.
Khalili Zanjani MR, Yamini Y, Shariati S, Jönsson JÅ. A new liquid-phase microextraction method based on solidification of floating organic drop. Anal Chim Acta. 2007;585:286-93.
An J, Rahn KL, Anderson JL. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents. Talanta. 2017;167:268-78.
Mafra G, Vieira AA, Merib J, Anderson JL, Carasek E. Single drop microextraction in a 96-well plate format: A step toward automated and high-throughput analysis. Anal Chim Acta. 2019;1063:159-66.
Pedersen-Bjergaard S, Rasmussen KE. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal Chem. 1999;71:2650-6.
Sikanen T, Pedersen-Bjergaard S, Jensen H, Kostiainen R, Rasmussen KE, Kotiaho T. Implementation of droplet-membrane-droplet liquid-phase microextraction under stagnant conditions for lab-on-a-chip applications. Anal Chim Acta. 2010;658:133-40.
Pedersen-Bjergaard S, Rasmussen KE. Electrokinetic migration across artificial liquid membranes: New concept for rapid sample preparation of biological fluids. J Chromatogr A. 2006;1109:183-90.
Petersen NJ, Jensen H, Hansen SH, Foss ST, Snakenborg D, Pedersen-Bjergaard S. On-chip electro membrane extraction. Microfluid Nanofluidics. 2010;9:881-8.
Petersen NJ, Foss ST, Jensen H, Hansen SH, Skonberg C, Snakenborg D, et al. On-chip electro membrane extraction with online ultraviolet and mass spectrometric detection. Anal Chem. 2011;83:44-51.
Dowlatshah S, Saraji M, Ramos-Payán M. A green microfluidic method based liquid phase microextraction for the determination of parabens in human urine samples. J Chromatogr A. 2022;1673:463084.
Dowlatshah S, Santigosa E, Saraji M, Payán MR. A selective and efficient microfluidic method-based liquid phase microextraction for the determination of sulfonamides in urine samples. J Chromatogr A. 2021;1652:462344.
Wang H, Wu Z, Zhang Y, Chen B, He M, Hu B. Chip-based liquid phase microextraction combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for trace metal determination in cell samples. J Anal At Spectrom. 2013;28:1660-5.
Ramos-Payan M, Maspoch S, Llobera A. An effective microfluidic based liquid-phase microextraction device (μlPME) for extraction of non-steroidal anti-inflammatory drugs from biological and environmental samples. Anal Chim Acta. 2016;946:56-63.
Payán MR, Murillo ES, Coello J, López MÁB. A comprehensive study of a new versatile microchip device based liquid phase microextraction for stopped-flow and double-flow conditions. J Chromatogr A. 2018;1556:29-36.
Santigosa E, Maspoch S, Ramos Payán M. Liquid phase microextraction integrated into a microchip device for the extraction of fluoroquinolones from urine samples. Microchem J. 2019;145:280-6.
Ramos Payán M, Santigosa E, Fernández Torres R, Bello López MÁ. A New Microchip Design. A Versatile Combination of Electromembrane Extraction and Liquid-Phase Microextraction in a Single Chip Device. Anal Chem. 2018;90:10417-24.
Li B, Petersen NJ, Payán MDR, Hansen SH, Pedersen-Bjergaard S. Design and implementation of an automated liquid-phase microextraction-chip system coupled on-line with high performance liquid chromatography. Talanta. 2014;120:224-9.
Payán MDR, Li B, Petersen NJ, Jensen H, Hansen SH, Pedersen-Bjergaard S. Nano-electromembrane extraction. Anal Chim Acta. 2013;785:60-6.
Kubáň P, Boček P. Micro-electromembrane extraction across free liquid membranes. Extractions of basic drugs from undiluted biological samples. J Chromatogr A. 2014;1337:32-9.
Dvořák M, Seip KF, Pedersen-Bjergaard S, Kubáň P. Semi-automated set-up for exhaustive micro-electromembrane extractions of basic drugs from biological fluids. Anal Chim Acta. 2018;1005:34-42.
Javier Carrasco-Correa E, Kubáň P, Cocovi-Solberg DJ, Miró M. Fully automated electric-field-driven liquid phase microextraction system with renewable organic membrane as a front end to high performance liquid chromatography. Anal Chem. 2019;91:10808-15.
Gjelstad A, Rasmussen KE, Parmer MP, Pedersen-Bjergaard S. Parallel artificial liquid membrane extraction: micro-scale liquid-liquid-liquid extraction in the 96-well format. Bioanalysis. 2013;5:1377-85.
Eibak LEE, Rasmussen KE, Øiestad EL, Pedersen-Bjergaard S, Gjelstad A. Parallel electromembrane extraction in the 96-well format. Anal Chim Acta. 2014;828:46-52.
Ask KS, Lid M, Øiestad EL, Pedersen-Bjergaard S, Gjelstad A. Liquid-phase microextraction in 96-well plates - calibration and accurate quantification of pharmaceuticals in human plasma samples. J Chromatogr A. 2019;1602:117-23.
Mestad IO, Gjelstad A, Pedersen-Bjergaard S, Øiestad EL. Green and sustainable drug analysis - Combining microsampling and microextraction of drugs of abuse. Sustain Chem Pharm. 2021;24:100517.
Bouchouareb K, Combès A, Pichon V. Determination of nerve agent biomarkers in human urine by a natural hydrophobic deep eutectic solvent-parallel artificial liquid membrane extraction technique. Talanta. 2022;249:123704.
Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 2006;1116:1-9.
Farajzadeh MA, Mogaddam MRA. Air-assisted liquid-liquid microextraction method as a novel microextraction technique; Application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography-flame ionization detection. Anal Chim Acta. 2012;728:31-8.
Psillakis E. Vortex-assisted liquid-liquid microextraction revisited. TrAC - Trends Anal Chem. 2019;113:332-9.
Albero B, Tadeo JL, Pérez RA. Ultrasound-assisted extraction of organic contaminants. TrAC - Trends Anal Chem. 2019;118:739-50.
Chen H, Chen R, Li S. Low-density extraction solvent-based solvent terminated dispersive liquid-liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples. J Chromatogr A. 2010;1217:1244-8.
Sricharoen P, Limchoowong N, Techawongstien S, Chanthai S. Ultrasound-assisted emulsification microextraction coupled with salt-induced demulsification based on solidified floating organic drop prior to HPLC determination of Sudan dyes in chili products. Arab J Chem. 2019;12:5223-33.
Tay KS, Rahman NA, Radzi Bin Abas M. Magnetic nanoparticle assisted dispersive liquid-liquid microextraction for the determination of 4-n-nonylphenol in water. Anal Methods. 2013;5:2933-8.
Asghari A, Khanalipoor F, Barfi B, Rajabi M. Optimized miniaturized air-assisted liquid-liquid microextraction for determination of non-steroidal anti-inflammatory drugs in bio-fluid samples. RSC Adv. 2016;6:109473-84.
Gong A, Zhu X. Miniaturized ionic liquid dispersive liquid-liquid microextraction in a coupled-syringe system combined with UV for extraction and determination of danazol in danazol capsule and mice serum. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2016;159:163-8.
Fabjanowicz M, Różańska A, Kalinowska K, Płotka-Wasylka J. Miniaturized, green salting-out liquid-liquid microextraction coupled with GC-MS used to evaluate biogenic amines in wine samples. Microchem J. 2022;180:107616.
Różańska A, Fabjanowicz M, Kalinowska K, Polkowska Ż, Płotka-Wasylka J. Green, simple analytical method for biogenic amines determination in fruit juice samples using salting-out assisted liquid-liquid microextraction and gas chromatography-mass spectrometry. Food Chem. 2022;384:132557.
Karami M, Yamini Y, Asl YA. On-chip ion pair-based dispersive liquid-liquid extraction for quantitative determination of histamine H2 receptor antagonist drugs in human urine. Talanta. 2020;206:120235.
You JB, Lohse D, Zhang X. Surface nanodroplet-based nanoextraction from sub-milliliter volumes of dense suspensions. Lab Chip. 2021;21:2574-85.
Wu H, Kanike C, Atta A, Zhang X. Nanoextraction based on surface nanodroplets for chemical preconcentration and determination. Biomicrofluidics. 2022;16:051502.
Wells SS, Kennedy RT. High-throughput liquid-liquid extractions with nanoliter volumes. Anal Chem. 2020;92:3189-97.
Grau J, Azorín C, Benedé JL, Chisvert A, Salvador A. Use of green alternative solvents in dispersive liquid-liquid microextraction: A review. J Sep Sci. 2022;45:210-22.
Hansen FA, Pedersen-Bjergaard S. Emerging extraction strategies in analytical chemistry. Anal Chem. 2020;92:2-15.