Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study.
Deep learning classifier
Eosin staining
Gastric cancer histology
Hematoxylin
Laurén classification
Prognostic utility
Survival stratification
Journal
Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association
ISSN: 1436-3305
Titre abrégé: Gastric Cancer
Pays: Japan
ID NLM: 100886238
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
17
03
2023
accepted:
09
05
2023
medline:
24
7
2023
pubmed:
3
6
2023
entrez:
3
6
2023
Statut:
ppublish
Résumé
The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort (N = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe (N = 322) and one from Japan (N = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan-Meier curves with log-rank test statistics. Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66-1.44, p-value = 0.51) and 1.23 (95% CI 0.96-1.43, p-value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18-1.65, p-value < 0.005) and 1.41 (95% CI 1.20-1.57, p-value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian (overall survival log-rank test p-value < 0.005, HR 1.43 (95% CI 1.05-1.66, p-value = 0.03) and European cohorts (overall survival log-rank test p-value < 0.005, HR 1.56 (95% CI 1.16-1.76, p-value < 0.005)). Our study shows that gastric adenocarcinoma subtyping using pathologist's Laurén classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.
Identifiants
pubmed: 37269416
doi: 10.1007/s10120-023-01398-x
pii: 10.1007/s10120-023-01398-x
pmc: PMC10361890
doi:
Types de publication
Multicenter Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
708-720Subventions
Organisme : Bundesministerium für Gesundheit
ID : ZMVI1-2520DAT111
Organisme : Deutsche Krebshilfe
ID : 70113864
Organisme : Bundesministerium für Bildung und Forschung
ID : PEARL
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KD2104C; CAMINO
Organisme : Bundesministerium für Bildung und Forschung
ID : 01EO2101; SWAG
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KD2215A; TRANSFORM LIVER
Organisme : Bundesministerium für Bildung und Forschung
ID : 031L0312A
Organisme : Deutscher Akademischer Austauschdienst
ID : SECAI
Organisme : Deutscher Akademischer Austauschdienst
ID : 57616814
Organisme : Gemeinsame Bundesausschuss
ID : Transplant.KI
Organisme : Gemeinsame Bundesausschuss
ID : 01VSF21048
Organisme : European Union
ID : ODELIA
Organisme : European Union
ID : 101057091; GENIAL
Organisme : European Union
ID : 101096312
Organisme : National Institute for Health and Care Research
ID : NIHR
Organisme : National Institute for Health and Care Research
ID : NIHR213331
Informations de copyright
© 2023. The Author(s).
Références
Cancers (Basel). 2021 Jan 14;13(2):
pubmed: 33466779
Gastric Cancer. 2017 Jul;20(4):573-582
pubmed: 27866287
Med Image Anal. 2022 Jul;79:102474
pubmed: 35588568
BMC Cancer. 2021 Oct 29;21(1):1158
pubmed: 34715810
Nat Rev Clin Oncol. 2019 Nov;16(11):703-715
pubmed: 31399699
Ann Intern Med. 2015 Jan 6;162(1):55-63
pubmed: 25560714
World J Gastroenterol. 2022 Mar 28;28(12):1187-1203
pubmed: 35431510
Pathobiology. 2018;85(1-2):50-63
pubmed: 28618420
Cancer. 2013 Apr 1;119(7):1330-7
pubmed: 23280435
Br J Cancer. 2017 Sep 5;117(6):775-782
pubmed: 28765618
JAMA. 2001 Apr 18;285(15):1987-91
pubmed: 11308435
Ther Adv Med Oncol. 2020 Jul 23;12:1758835920930359
pubmed: 32754227
Histopathology. 2020 Jan;76(2):182-188
pubmed: 31433515
Gastroenterology. 2011 Aug;141(2):476-85, 485.e1-11
pubmed: 21684283
Gastric Cancer. 2021 Jan;24(1):1-21
pubmed: 32060757
Histopathology. 2020 Feb;76(3):433-446
pubmed: 31538348
Nat Med. 2019 Jul;25(7):1054-1056
pubmed: 31160815
J Gastroenterol. 2017 May;52(5):594-601
pubmed: 27590416
Acta Pathol Microbiol Scand. 1965;64:31-49
pubmed: 14320675
J Pathol. 2022 Jul;257(4):430-444
pubmed: 35342954
Eur Heart J Digit Health. 2023 Mar 02;4(3):265-274
pubmed: 37265858
Br J Cancer. 2021 Feb;124(4):686-696
pubmed: 33204028
Gen Diagn Pathol. 1997 Jul;143(1):39-48
pubmed: 9269907
J Clin Oncol. 2003 Jun 1;21(11):2070-6
pubmed: 12775731
Nat Commun. 2022 Sep 29;13(1):5711
pubmed: 36175413
Int J Surg. 2012;10(1):28-55
pubmed: 22036893
J Pathol. 2022 Mar;256(3):269-281
pubmed: 34738636
Nat Rev Cancer. 2021 Mar;21(3):199-211
pubmed: 33514930
Lancet Digit Health. 2021 Oct;3(10):e654-e664
pubmed: 34417147
Med Image Anal. 2023 Jan;83:102645
pubmed: 36270093
Oncol Lett. 2016 May;11(5):2959-2964
pubmed: 27123046
Nat Cancer. 2022 Sep;3(9):1026-1038
pubmed: 36138135
World J Gastroenterol. 2018 Jun 28;24(24):2567-2581
pubmed: 29962814