Shielding and nurturing: Fibronectin as a modulator of cancer drug resistance.


Journal

Journal of cellular physiology
ISSN: 1097-4652
Titre abrégé: J Cell Physiol
Pays: United States
ID NLM: 0050222

Informations de publication

Date de publication:
08 2023
Historique:
revised: 02 05 2023
received: 22 03 2023
accepted: 10 05 2023
medline: 17 8 2023
pubmed: 3 6 2023
entrez: 3 6 2023
Statut: ppublish

Résumé

Resistance to chemotherapy and targeted therapies constitute a common hallmark of most cancers and represent a dominant factor fostering tumor relapse and metastasis. Fibronectin, an abundant extracellular matrix glycoprotein, has long been proposed to play an important role in the pathobiology of cancer. Recent research has unraveled the role of Fibronectin in the onset of chemoresistance against a variety of antineoplastic drugs including DNA-damaging agents, hormone receptor antagonists, tyrosine kinase inhibitors, microtubule destabilizing agents, etc. The current review summarizes the role played by Fibronectin in mediating drug resistance against diverse anticancer drugs. We have also discussed how the aberrant expression of Fibronectin drives the oncogenic signaling pathways ultimately leading to drug resistance through the inhibition of apoptosis, promotion of cancer cell growth and proliferation.

Identifiants

pubmed: 37269547
doi: 10.1002/jcp.31048
doi:

Substances chimiques

Fibronectins 0
Antineoplastic Agents 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1651-1669

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Albrecht, M., Renneberg, H., Wennemuth, G., Möschler, O., Janssen, M., Aumüller, G., & Konrad, L. (1999). Fibronectin in human prostatic cells in vivo and in vitro: Expression, distribution, and pathological significance. Histochemistry and Cell Biology, 112, 51-61.
Ali, S., Rasool, M., Chaoudhry, H., Pushparaj, P. N., Jha, P., Hafiz, A., Mahfooz, M., Sami, G. A., Kamal, M. A., Bashir, S., Ali, A., & Jamal, M. S. (2016). Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation, 12(3), 135-139.
Alkhatib, M. H., Al-Otaibi, W. A., & Wali, A. N. (2018). Antineoplastic activity of mitomycin C formulated in nanoemulsions-based essential oils on HeLa cervical cancer cells. Chemico-Biological Interactions, 291, 72-80.
Amin, A., Chikan, N. A., Mokhdomi, T. A., Bukhari, S., Koul, A. M., Shah, B. A., Gharemirshamlu, F. R., Wafai, A. H., Qadri, A., & Qadri, R. A. (2016). Irigenin, a novel lead from Western Himalayan chemiome inhibits Fibronectin-Extra Domain A induced metastasis in lung cancer cells. Scientific Reports, 6(1), 37151.
Amin, A., Mokhdomi, T. A., Bukhari, S., Wani, S. H., Wafai, A. H., Lone, G. N., Qadri, A., & Qadri, R. A. (2015). Tectorigenin ablates the inflammation-induced epithelial-mesenchymal transition in a co-culture model of human lung carcinoma. Pharmacological Reports, 67(2), 382-387.
Amin, A., Mokhdomi, T. A., Bukhari, S., Wani, Z., Chikan, N. A., Shah, B. A., Koul, A. M., Majeed, U., Farooq, F., Qadri, A., & Qadri, R. A. (2021). Lung cancer cell-derived EDA-containing fibronectin induces an inflammatory response from monocytes and promotes metastatic tumor microenvironment. Journal of Cellular Biochemistry, 122(5), 562-576.
Amrutkar, M., Aasrum, M., Verbeke, C. S., & Gladhaug, I. P. (2019). Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells. BMC Cancer, 19(1), 596.
Arnold, S. A., Loomans, H. A., Ketova, T., Andl, C. D., Clark, P. E., & Zijlstra, A. (2016). Urinary oncofetal ED-A fibronectin correlates with poor prognosis in patients with bladder cancer. Clinical & Experimental Metastasis, 33, 29-44.
Arıca, B., Çalış, S., Kaş, H. S., Sargon, M. F., & Hıncal, A. A. (2002). 5-Fluorouracil encapsulated alginate beads for the treatment of breast cancer. International Journal of Pharmaceutics, 242(1-2), 267-269.
Bae, Y. K., Kim, A., Kim, M. K., Choi, J. E., Kang, S. H., & Lee, S. J. (2013). Fibronectin expression in carcinoma cells correlates with tumor aggressiveness and poor clinical outcome in patients with invasive breast cancer. Human Pathology, 44(10), 2028-2037.
Baghban, R., Roshangar, L., Jahanban-Esfahlan, R., Seidi, K., Ebrahimi-Kalan, A., Jaymand, M., Kolahian, S., Javaheri, T., & Zare, P. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 18(1), 59.
Bell, D. W., Gore, I., Okimoto, R. A., Godin-Heymann, N., Sordella, R., Mulloy, R., Sharma, S. V., Brannigan, B. W., Mohapatra, G., Settleman, J., & Haber, D. A. (2005). Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nature Genetics, 37(12), 1315-1316.
Berrazouane, S., Boisvert, M., Salti, S., Mourad, W., Al-Daccak, R., Barabé, F., & Aoudjit, F. (2019). Beta1 integrin blockade overcomes doxorubicin resistance in human T-cell acute lymphoblastic leukemia. Cell Death & Disease, 10(5), 357.
Bethune, G., Bethune, D., Ridgway, N., & Xu, Z. (2010). Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. Journal of Thoracic Disease, 2(1), 48-51.
Binenbaum, Y., Na′ara, S., & Gil, Z. (2015). Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resistance Updates, 23, 55-68.
Birchler, M. T., Milisavlijevic, D., Pfaltz, M., Neri, D., Odermatt, B., Schmid, S., & Stoeckli, S. J. (2003). Expression of the extra domain B of fibronectin, a marker of angiogenesis, in head and neck tumors. The Laryngoscope, 113(7), 1231-1237.
Blick, S. K. A., & Scott, L. J. (2007). Cetuximab. Drugs, 67(17), 2585-2607.
Brozovic, A. (2017). The relationship between platinum drug resistance and epithelial-mesenchymal transition. Archives of Toxicology, 91(2), 605-619.
Chang, L., Hu, Y., Fu, Y., Zhou, T., You, J., Du, J., Zheng, L., Cao, J., Ying, M., Dai, X., Su, D., He, Q., Zhu, H., & Yang, B. (2019). Targeting slug-mediated non-canonical activation of c-Met to overcome chemo-resistance in metastatic ovarian cancer cells. Acta Pharmaceutica Sinica B, 9(3), 484-495.
Chang, M. S. (2012). Tamoxifen resistance in breast cancer. Biomolecules and Therapeutics, 20(3), 256-267.
Chauhan, A. K., Iaconcig, A., Baralle, F. E., & Muro, A. F. (2004). Alternative splicing of fibronectin: A mouse model demonstrates the identity of in vitro and in vivo systems and the processing autonomy of regulated exons in adult mice. Gene, 324, 55-63.
Chauhan, A. K., Moretti, F. A., Iaconcig, A., Baralle, F. E., & Muro, A. F. (2005). Impaired motor coordination in mice lacking the EDA exon of the fibronectin gene. Behavioural Brain Research, 161(1), 31-38.
Chen, B., Zhang, Y., Li, C., Xu, P., Gao, Y., & Xu, Y. (2021). CNTN-1 promotes docetaxel resistance and epithelial-to-mesenchymal transition via the PI3K/Akt signaling pathway in prostate cancer, Archives of Medical Science: AMS, 17(1), 152.
Chen, D.-H., & Zhang, X.-S. (2015). Targeted therapy: Resistance and re-sensitization. Chinese Journal of Cancer, 34(3), 1-6.
Chen, G., Kronenberger, P., Teugels, E., Umelo, I. A., & De Grève, J. (2012). Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: The effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. BMC Medicine, 10(1), 28.
Cheung-Ong, K., Giaever, G., & Nislow, C. (2013). DNA-damaging agents in cancer chemotherapy: Serendipity and chemical biology. Chemistry & Biology, 20(5), 648-659.
Ciccolini, J., Serdjebi, C., Peters, G. J., & Giovannetti, E. (2016). Pharmacokinetics and pharmacogenetics of Gemcitabine as a mainstay in adult and pediatric oncology: an EORTC-PAMM perspective. Cancer Chemotherapy and Pharmacology, 78(1), 1-12.
Cross, D. A. E., Ashton, S. E., Ghiorghiu, S., Eberlein, C., Nebhan, C. A., Spitzler, P. J., Orme, J. P., Finlay, M. R. V., Ward, R. A., Mellor, M. J., Hughes, G., Rahi, A., Jacobs, V. N., Brewer, M. R., Ichihara, E., Sun, J., Jin, H., Ballard, P., Al-Kadhimi, K., … Pao, W. (2014). AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discovery, 4(9), 1046-1061.
Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A., Dalton, W. S., Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A., & Dalton, W. S. (1999). Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood, 93(5), 1658-1667.
Dasari, S., & Bernard Tchounwou, P. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 740, 364-378.
Denys, H., Braems, G., Lambein, K., Pauwels, P., Hendrix, A., De Boeck, A., Mathieu, V., Bracke, M., & De Wever, O. (2009). The extracellular matrix regulates cancer progression and therapy response: Implications for prognosis and treatment. Current Pharmaceutical Design, 15(12), 1373-1384.
Dickinson, C. D., Gay, D. A., Parello, J., Ruoslahti, E., & Ely, K. R. (1994). Crystals of the cell-binding module of fibronectin obtained from a series of recombinant fragments differing in length. Journal of Molecular Biology, 238(1), 123-127.
Du, X., Yang, B., An, Q., Assaraf, Y. G., Cao, X., & Xia, J. (2021). Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. The Innovation, 2(2), 100103.
Efthymiou, G. (2019). Deciphering the role of oncofetal fibronectin isoforms in matrix assembly and cellular function COMUE Université Côte d′Azur (2015-2019).
Efthymiou, G., Saint, A., Ruff, M., Rekad, Z., Ciais, D., & Van Obberghen-Schilling, E. (2020). Shaping up the tumor microenvironment with cellular fibronectin. Frontiers in Oncology, 10, 641.
Eke, I., Storch, K., Krause, M., & Cordes, N. (2013). Cetuximab attenuates its cytotoxic and radiosensitizing potential by inducing fibronectin biosynthesis cetuximab induces fibronectin biosynthesis. Cancer Research, 73(19), 5869-5879.
Frank, N. Y., Margaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A. M., Gasser, M., Sayegh, M. H., Sadee, W., & Frank, M. H. (2005). ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Research, 65(10), 4320-4333.
Fu, J., Jiang, H., Wu, C., Jiang, Y., Xiao, L., & Tian, Y. (2016). Overcoming cetuximab resistance in Ewing's sarcoma by inhibiting lactate dehydrogenase-A. Molecular Medicine Reports, 14(1), 995-1001.
Gao, W., Liu, Y., Qin, R., Liu, D., & Feng, Q. (2016). Silence of fibronectin 1 increases cisplatin sensitivity of non-small cell lung cancer cell line. Biochemical and Biophysical Research Communications, 476(1), 35-41.
Gao, Y., Liu, Z., Zhang, X., He, J., Pan, Y., Hao, F., Xie, L., Li, Q., Qiu, X., & Wang, E. (2013). Inhibition of cytoplasmic GSK-3β increases cisplatin resistance through activation of Wnt/β-catenin signaling in A549/DDP cells. Cancer Letters, 336(1), 231-239.
Garvey, C. M., Lau, R., Sanchez, A., Sun, R. X., Fong, E. J., Doche, M. E., Chen, O., Jusuf, A., Lenz, H. J., Larson, B., & Mumenthaler, S. M. (2020). Anti-EGFR therapy induces EGF secretion by cancer-associated fibroblasts to confer colorectal cancer chemoresistance. Cancers, 12(6), 1393.
Gerber, D. E. (2008). Targeted therapies: A new generation of cancer treatments. American Family Physician, 77(3), 311-319.
Giannini, R., Faviana, P., Cavinato, T., Elisei, R., Pacini, F., Berti, P., Fontanini, G., Ugolini, C., Camacci, T., De Ieso, K., Miccoli, P., Pinchera, A., & Basolo, F. (2003). Galectin-3 and oncofetal-fibronectin expression in thyroid neoplasia as assessed by reverse transcription-polymerase chain reaction and immunochemistry in cytologic and pathologic specimens. Thyroid, 13(8), 765-770.
Gong, Z., Chen, M., Ren, Q., Yue, X., & Dai, Z. (2020). Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduction and Targeted Therapy, 5(1), 12.
Goossens, K., Van Soom, A., Van Zeveren, A., Favoreel, H., & Peelman, L. J. (2009). Quantification of fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC Developmental Biology, 9(1), 1-16.
Grem, J. L. (2005). Screening for dihydropyrimidine dehydrogenase deficiency (11, pp. 5067-5068). AACR.
Hamilton, G., & Rath, B. (2014). A short update on cancer chemoresistance. Wiener Medizinische Wochenschrift, 164(21), 456-460.
Han, Q., Cheng, P., Yang, H., Liang, H., & Lin, F. (2020). miR-146b reverses epithelial-mesenchymal transition via targeting PTP1B in cisplatin-resistance human lung adenocarcinoma cells. Journal of Cellular Biochemistry, 121(8-9), 3901-3912.
Han, S., Khuri, F. R., & Roman, J. (2006). Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Research, 66(1), 315-323.
Hansen, R., Quebbeman, E., Beatty, P., Ritch, P., Anderson, T., Jenkins, D., Frick, J., & Ausman, R. (1987). Continuous 5-fluorouracil infusion in refractory carcinoma of the breast. Breast Cancer Research and Treatment, 10(2), 145-149.
Harris, L. N., Broadwater, G., Lin, N. U., Miron, A., Schnitt, S. J., Cowan, D., Lara, J., Bleiweiss, I., Berry, D., Ellis, M., Hayes, D. F., Winer, E. P., & Dressler, L. (2006). Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342. Breast Cancer Research, 8, R66.
Hazlehurst, L. A., Damiano, J. S., Buyuksal, I., Pledger, W. J., & Dalton, W. S. (2000). Adhesion to fibronectin via β1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene, 19(38), 4319-4327.
Hazlehurst, L. A., Landowski, T. H., & Dalton, W. S. (2003). Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene, 22(47), 7396-7402.
Hazlehurst, L. A., Valkov, N., Wisner, L., Storey, J. A., Boulware, D., Sullivan, D. M., & Dalton, W. S. (2001). Reduction in drug-induced DNA double-strand breaks associated with β1 integrin-mediated adhesion correlates with drug resistance in U937 cells. Blood, 98(6), 1897-1903.
Heemskerk, N., & van Egmond, M. (2018). Monoclonal antibody-mediated killing of tumour cells by neutrophils. European Journal of Clinical Investigation, 48, e12962.
Heinemann, V. (2001). Gemcitabine: Progress in the treatment of pancreatic cancer. Oncology, 60(1), 8-18.
Hiscox, S., Jiang, W. G., Obermeier, K., Taylor, K., Morgan, L., Burmi, R., Barrow, D., & Nicholson, R. I. (2006). Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of β-catenin phosphorylation. International Journal of Cancer, 118(2), 290-301.
Hooper, A. T., Marquette, K., Chang, C.-P. B., Golas, J., Jain, S., Lam, M.-H., Guffroy, M., Leal, M., Falahatpisheh, H., Mathur, D., Chen, T., Kelleher, K., Khandke, K., Muszynska, E., Loganzo, F., Rosfjord, E., Lucas, J., Kan, Z., Subramanyam, C., … Sapra, P. (2022). Anti-extra domain B splice variant of fibronectin antibody-drug conjugate eliminates tumors with enhanced efficacy when combined with checkpoint blockade. Molecular Cancer Therapeutics, 21(9), 1462-1472.
Huang, D., Duan, H., Huang, H., Tong, X., Han, Y., Ru, G., Qu, L., Shou, C., & Zhao, Z. (2016). Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Scientific Reports, 6(1), 20502.
Huang, W.-C., Kuo, K.-T., Wang, C.-H., Yeh, C.-T., & Wang, Y. (2019). Cisplatin resistant lung cancer cells promoted M2 polarization of tumor-associated macrophages via the Src/CD155/MIF functional pathway. Journal of Experimental & Clinical Cancer Research, 38(1), 180.
Humblet, Y. (2004). Cetuximab: An IgG1 monoclonal antibody for the treatment of epidermal growth factor receptor-expressing tumours. Expert Opinion on Pharmacotherapy, 5(7), 1621-1633.
Hynes, R. O. (1990). Expression of fibronectins by cells in culture, Fibronectins (pp. 49-83). Springer.
Inufusa, H., Nakamura, M., Adachi, T., Nakatani, Y., Shindo, K., Yasutomi, M., & Matsuura, H. (1995). Localization of oncofetal and normal fibronectin in colorectal cancer. Correlation with histologic grade, liver metastasis, and prognosis. Cancer, 75(12), 2802-2808.
Ioachim, E., Charchanti, A., Briasoulis, E., Karavasilis, V., Tsanou, H., Arvanitis, D. L., Agnantis, N. J., & Pavlidis, N. (2002). Immunohistochemical expression of extracellular matrix components tenascin, fibronectin, collagen type IV and laminin in breast cancer: Their prognostic value and role in tumour invasion and progression. European Journal of Cancer, 38(18), 2362-2370.
Jarnagin, W. R., Rockey, D. C., Koteliansky, V. E., Wang, S.-S., & Bissell, D. M. (1994). Expression of variant fibronectins in wound healing: Cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. Journal of Cell Biology, 127(6), 2037-2048.
Jeon, M., Lee, J., Nam, S. J., Shin, I., Lee, J. E., & Kim, S. (2015). Induction of fibronectin by HER2 overexpression triggers adhesion and invasion of breast cancer cells. Experimental Cell Research, 333(1), 116-126.
Ji, X., Lu, Y., Tian, H., Meng, X., Wei, M., & Cho, W. C. (2019). Chemoresistance mechanisms of breast cancer and their countermeasures. Biomedicine & Pharmacotherapy, 114, 108800.
Jia, D., Yan, M., Wang, X., Hao, X., Liang, L., Liu, L., Kong, H., He, X., Li, J., & Yao, M. (2010). Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion. BMC Cancer, 10(1), 364.
Jia, Y., & Xie, J. (2015). Promising molecular mechanisms responsible for gemcitabine resistance in cancer. Genes & Diseases, 2(4), 299-306.
Jin, S., Sun, Y., Liang, X., Gu, X., Ning, J., Xu, Y., Chen, S., & Pan, L. (2022). Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduction and Targeted Therapy, 7(1), 39.
Jordon, M. (2002). Anti-cancer agents. Cur Med Chem, 2, 1-17.
Karamanos, N. K., Theocharis, A. D., Piperigkou, Z., Manou, D., Passi, A., Skandalis, S. S., Vynios, D. H., Orian-Rousseau, V., Ricard-Blum, S., Schmelzer, C. E. H., Duca, L., Durbeej, M., Afratis, N. A., Troeberg, L., Franchi, M., Masola, V., & Onisto, M. (2021). A guide to the composition and functions of the extracellular matrix. The FEBS Journal, 288(24), 6850-6912.
Khan, Z. A., Caurtero, J., Barbin, Y. P., Chan, B. M., Uniyal, S., & Chakrabarti, S. (2005). ED-B fibronectin in non-small cell lung carcinoma. Experimental Lung Research, 31(7), 701-711.
Kraft, S., Klemis, V., Sens, C., Lenhard, T., Jacobi, C., Samstag, Y., Wabnitz, G., Kirschfink, M., Wallich, R., Hänsch, G. M., & Nakchbandi, I. A. (2016). Identification and characterization of a unique role for EDB fibronectin in phagocytosis. Journal of Molecular Medicine, 94(5), 567-581.
Kumra, H., & Reinhardt, D. P. (2016). Fibronectin-targeted drug delivery in cancer. Advanced Drug Delivery Reviews, 97, 101-110.
Kun-Peng, Z., Chun-Lin, Z., Xiao-Long, M., & Lei, Z. (2019). Fibronectin-1 modulated by the long noncoding RNA OIP5-AS1/miR-200b-3p axis contributes to doxorubicin resistance of osteosarcoma cells. Journal of Cellular Physiology, 234(5), 6927-6939.
Leahy, D. J., Aukhil, I., & Erickson, H. P. (1996). 2.0 Å crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell, 84(1), 155-164.
Lee, A. V., Cui, X., & Oesterreich, S. (2001). Cross-talk among estrogen receptor, epidermal growth factor, and insulin-like growth factor signaling in breast cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 7(12), 4429.
Lee, Y., Kim, H. Y., Lee, S.-H., Lim, K. Y., Lee, G. K., Yun, T., Han, J. Y., Kim, H. T., & Lee, J. S. (2014). Clinical significance of heterogeneity in response to retreatment with epidermal growth factor receptor tyrosine kinase inhibitors in patients with lung cancer acquiring secondary resistance to the drug. Clinical Lung Cancer, 15(2), 145-151.
Leung, E. L.-H., Fan, X.-X., Wong, M. P., Jiang, Z.-H., Liu, Z.-Q., Yao, X.-J., Lu, L. L., Zhou, Y. L., Yau, L. F., Tin, V. P. C., & Liu, L. (2016). Targeting tyrosine kinase inhibitor-resistant non-small cell lung cancer by inducing epidermal growth factor receptor degradation via methionine 790 oxidation. Antioxidants & Redox Signaling, 24(5), 263-279.
Li, X., Yao, R., Yue, L., Qiu, W., Qi, W., Liu, S., Yao, Y., & Liang, J. (2014). FOXM 1 mediates resistance to docetaxel in gastric cancer via up-regulating Stathmin. Journal of Cellular and Molecular Medicine, 18(5), 811-823.
Lin, Q., Luo, L., & Wang, H. (2021). A new oxaliplatin resistance-related gene signature with strong predicting ability in colon cancer identified by comprehensive profiling. Frontiers in Oncology, 11, 644956.
Lin, T.-C., Yang, C.-H., Cheng, L.-H., Chang, W.-T., Lin, Y.-R., & Cheng, H.-C. (2019). Fibronectin in cancer: Friend or foe. Cells, 9(1), 27.
Liu, R., Page, C., Beidler, D. R., Wicha, M. S., & Núñez, G. (1999). Overexpression of Bcl-xL promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model. The American Journal of Pathology, 155(6), 1861-1867.
Liu, X., Pan, C.-G., & Luo, Z.-Q. (2019). High expression of NFAT2 contributes to carboplatin resistance in lung cancer. Experimental and Molecular Pathology, 110, 104290.
Locher, R., Erba, P. A., Hirsch, B., Bombardieri, E., Giovannoni, L., Neri, D., Dürkop, H., & Menssen, H. D. (2014). Abundant in vitro expression of the oncofetal ED-B-containing fibronectin translates into selective pharmacodelivery of 131 I-L19SIP in a prostate cancer patient. Journal of Cancer Research and Clinical Oncology, 140, 35-43.
Long, L., Xiang, H., Liu, J., Zhang, Z., & Sun, L. (2019). ZEB1 mediates doxorubicin (Dox) resistance and mesenchymal characteristics of hepatocarcinoma cells. Experimental and Molecular Pathology, 106, 116-122.
Longley, D. B., Harkin, D. P., & Johnston, P. G. (2003). 5-fluorouracil: Mechanisms of action and clinical strategies. Nature Reviews Cancer, 3(5), 330-338.
Luqmani, Y. A. (2005). Mechanisms of drug resistance in cancer chemotherapy. Medical Principles and Practice, 14(Suppl. 1), 35-48.
Lyons, A. J., Bateman, A. C., Spedding, A., Primrose, J. N., & Mandel, U. (2001). Oncofetal fibronectin and oral squamous cell carcinoma. British Journal of Oral and Maxillofacial Surgery, 39(6), 471-477.
Main, A. L., Harvey, T. S., Baron, M., Boyd, J., & Campbell, I. D. (1992). The three-dimensional structure of the tenth type III module of fibronectin: An insight into RGD-mediated interactions. Cell, 71, 671-678.
Manna, S., & Holz, M. K. (2016). Tamoxifen action in ER-negative breast cancer. Signal Transduction Insights, 5(STI), STI.S29901.
Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., & Baradaran, B. (2017). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 7(3), 339-348.
Matsunaga, T., Fukai, F., Miura, S., Nakane, Y., Owaki, T., Kodama, H., Tanaka, M., Nagaya, T., Takimoto, R., Takayama, T., & Niitsu, Y. (2008). Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia, 22(2), 353-360.
McFadden, J. P., Baker, B. S., Powles, A. V., & Fry, L. (2010). Psoriasis and extra domain A fibronectin loops. British Journal of Dermatology, 163(1), 5-11.
McMillin, D. W., Negri, J. M., & Mitsiades, C. S. (2013). The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nature Reviews Drug Discovery, 12(3), 217-228.
Menzin, A. W., Mola, J. R. L., Bilker, W. B., Wheeler, J. E., Rubin, S. C., & Feinberg, R. F. (1998). Identification of oncofetal fibronectin in patients with advanced epithelial ovarian cancer: Detection in ascitic fluid and localization to primary sites and metastatic implants. Cancer, 82(1), 152-158.
Mhawech, P., Dulguerov, P., Assaly, M., Ares, C., & Allal, A. S. (2005). EB-D fibronectin expression in squamous cell carcinoma of the head and neck. Oral Oncology, 41(1), 82-88.
Von Minckwitz, G., Procter, M., de Azambuja, E., Zardavas, D., Benyunes, M., Viale, G., Suter, T., Arahmani, A., Rouchet, N., Clark, E., Knott, A., Lang, I., Levy, C., Yardley, D. A., Bines, J., Gelber, R. D., Piccart, M., & Baselga, J. (2017). Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. New England Journal of Medicine, 377(2), 122-131.
Miyamoto, H., Murakami, T., Tsuchida, K., Sugino, H., Miyake, H., & Tashiro, S. (2004). Tumor-stroma interaction of human pancreatic cancer: Acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas, 28(1), 38-44.
Morgillo, F., Della Corte, C. M., Fasano, M., & Ciardiello, F. (2016). Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open, 1(3), e000060.
Muley, H., Fadó, R., Rodríguez-Rodríguez, R., & Casals, N. (2020). Drug uptake-based chemoresistance in breast cancer treatment. Biochemical Pharmacology, 177, 113959.
Muro, A. F., Moretti, F. A., Moore, B. B., Yan, M., Atrasz, R. G., Wilke, C. A., Flaherty, K. R., Martinez, F. J., Tsui, J. L., Sheppard, D., Baralle, F. E., Toews, G. B., & White, E. S. (2008). An essential role for fibronectin extra type III domain A in pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 177(6), 638-645.
Muro, F., Chauhan, A. K., Gajovic, S., Iaconcig, A., Porro, F., Stanta, G., & Baralle, F. E. (2003). Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. Journal of Cell Biology, 162(1), 149-160.
Murray, S., Briasoulis, E., Linardou, H., Bafaloukos, D., & Papadimitriou, C. (2012). Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies. Cancer Treatment Reviews, 38(7), 890-903.
Nagai, H., Isemura, M., Arai, H., Abe, T., Shimoda, S., Motomiya, M., Sato, H., Hashimoto, K., Takusagawa, K., & Konno, K. (1986). Pattern of fibronectin distribution in human lung cancer. Journal of Cancer Research and Clinical Oncology, 112(1), 1-5.
Nagel, Z. D., Kitange, G. J., Gupta, S. K., Joughin, B. A., Chaim, I. A., Mazzucato, P., Lauffenburger, D. A., Sarkaria, J. N., & Samson, L. D. (2017). DNA repair capacity in multiple pathways predicts chemoresistance in glioblastoma multiforme. Cancer Research, 77(1), 198-206.
Nakagawa, Y., Nakayama, H., Nagata, M., Yoshida, R., Kawahara, K., Hirosue, A., Tanaka, T., Yuno, A., Matsuoka, Y., Kojima, T., Yoshitake, Y., Hiraki, A., & Shinohara, M. (2014). Overexpression of fibronectin confers cell adhesion-mediated drug resistance (CAM-DR) against 5-FU in oral squamous cell carcinoma cells. International Journal of Oncology, 44(4), 1376-1384.
Natali, P., Nicotra, M., Di Filippo, F., & Bigotti, A. (1995). Expression of fibronectin, fibronectin isoforms and integrin receptors in melanocytic lesions. British Journal of Cancer, 71(6), 1243-1247.
Nielsen, D. L., Palshof, J., Brünner, N., Stenvang, J., & Viuff, B. M. (2017). Implications of ABCG2 expression on irinotecan treatment of colorectal cancer patients: A review. International Journal of Molecular Sciences, 18(9), 1926.
Niu, Z., Xu, P., Zhu, D., Tang, W., Ji, M., Lin, Q., Liu, T., Ren, L., Wei, Y., & Xu, J. (2018). Integrin β1 mediates 5-fluorouracil chemoresistance under translational control of eIF4E in colorectal cancer. International Journal of Clinical and Experimental Pathology, 11(10), 4771-4783.
Noonberg, S. B., & Benz, C. C. (2000). Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily. Drugs, 59(4), 753-767.
Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., & Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366(1), 2-16.
Ohnishi, T., Hiraga, S., Izumoto, S., Matsumura, H., Kanemura, Y., Arita, N., & Hayakawa, T. (1998). Role of fibronectin-stimulated tumor cell migration in glioma invasion in vivo: Clinical significance of fibronectin and fibronectin receptor expressed in human glioma tissues. Clinical & Experimental Metastasis, 16, 729-741.
Osborne, C. K., Schiff, R., Fuqua, S. A., & Shou, J. (2001). Estrogen receptor: Current understanding of its activation and modulation. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 7(12), 4338.
Oyama, F., Hirohashi, S., Sakamoto, M., Titani, K., & Sekiguchi, K. (1993). Coordinate oncodevelopmental modulation of alternative splicing of fibronectin pre-messenger RNA at ED-A, ED-B, and CS1 regions in human liver tumors. Cancer Research, 53(9), 2005-2011.
Oyama, F., Murata, Y., Suganuma, N., Kimura, T., Titani, K., & Sekiguchi, K. (1989). Patterns of alternative splicing of fibronectin pre-mRNA in human adult and fetal tissues. Biochemistry, 28(3), 1428-1434.
Özkan, A., Stolley, D. L., Cressman, E. N., McMillin, M., DeMorrow, S., Yankeelov, T. E., & Rylander, M. N. (2021). Tumor microenvironment alters chemoresistance of hepatocellular carcinoma through CYP3A4 metabolic activity. Frontiers in Oncology, 11, 662135.
Pagani, F., Zagato, L., Vergani, C., Casari, G., Sidoli, A., & Baralle, F. E. (1991). Tissue-specific splicing pattern of fibronectin messenger RNA precursor during development and aging in rat. Journal of Cell Biology, 113(5), 1223-1229.
Pan, C. W., Shen, Z. J., Wu, T. T., Tang, X. Y., Wang, M., Sun, J., & Shao, Y. (2009). Cell adhesion to fibronectin induces mitomycin C resistance in bladder cancer cells. BJU International, 104(11), 1774-1779.
Patel, H. K., & Bihani, T. (2018). Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacology & Therapeutics, 186, 1-24.
Patten, J., & Wang, K. (2021). Fibronectin in development and wound healing. Advanced Drug Delivery Reviews, 170, 353-368.
Paz, M. M., Zhang, X., Lu, J., & Holmgren, A. (2012). A new mechanism of action for the anticancer drug mitomycin C: Mechanism-based inhibition of thioredoxin reductase. Chemical Research in Toxicology, 25(7), 1502-1511.
Petrović, M., & Todorović, D. (2016). Biochemical and molecular mechanisms of action of cisplatin in cancer cells. Facta Universitatis, Series: Medicine & Biology, 18(1), 12-18.
Pienta, K. J. (2001). Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer Paper presented at the Seminars in onco logy.
Pontiggia, O., Sampayo, R., Raffo, D., Motter, A., Xu, R., Bissell, M. J., de Kier Joffé, E. B., & Simian, M. (2012). The tumor microenvironment modulates tamoxifen resistance in breast cancer: A role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Research and Treatment, 133(2), 459-471.
Potts, J. R., & Campbell, I. D. (1996). Structure and function of fibronectin modules. Matrix Biology, 15(5), 313-320.
Pozzi, C., Cuomo, A., Spadoni, I., Magni, E., Silvola, A., Conte, A., Sigismund, S., Ravenda, P. S., Bonaldi, T., Zampino, M. G., Cancelliere, C., Di Fiore, P. P., Bardelli, A., Penna, G., & Rescigno, M. (2016). The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nature Medicine, 22(6), 624-631.
Puhr, M., Hoefer, J., Schäfer, G., Erb, H. H. H., Oh, S. J., Klocker, H., Heidegger, I., Neuwirt, H., & Culig, Z. (2012). Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. The American Journal of Pathology, 181(6), 2188-2201.
Pytela, R., Pierschbacher, M. D., & Ruoslahti, E. (1985). Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell, 40(1), 191-198.
Qin, S., Zhang, B., Xiao, G., Sun, X., Li, G., Huang, G., Gao, X., Li, X., Wang, H., Yang, C., & Ren, H. (2016). Fibronectin protects lung cancer cells against docetaxel-induced apoptosis by promoting Src and caspase-8 phosphorylation. Tumor Biology, 37(10), 13509-13520.
Ramaswamy, B., & Puhalla, S. (2006). Docetaxel: A tubulin-stablizing agent approved for the management of several solid. Drugs of Today, 42(4), 265.
Randazzo, O., Papini, F., Mantini, G., Gregori, A., Parrino, B., Liu, D. S. K., Cascioferro, S., Carbone, D., Peters, G. J., Frampton, A. E., Garajova, I., & Giovannetti, E. (2020). “Open sesame?”: Biomarker status of the human equilibrative nucleoside transporter-1 and molecular mechanisms influencing its expression and activity in the uptake and cytotoxicity of gemcitabine in pancreatic cancer. Cancers, 12(11), 3206.
Raymond, E., Faivre, S., & Armand, J. P. (2000). Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs, 60(1), 15-23.
Rebucci, M., & Michiels, C. (2013). Molecular aspects of cancer cell resistance to chemotherapy. Biochemical Pharmacology, 85(9), 1219-1226.
Redman, J. M., Hill, E. M., AlDeghaither, D., & Weiner, L. M. (2015). Mechanisms of action of therapeutic antibodies for cancer. Molecular Immunology, 67(2), 28-45.
Regales, L., Gong, Y., Shen, R., de Stanchina, E., Vivanco, I., Goel, A., & Mellinghoff, I. K. (2009). Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. The Journal of Clinical Investigation, 119(10), 3000-3010.
Restifo, N. P., Smyth, M. J., & Snyder, A. (2016). Acquired resistance to immunotherapy and future challenges. Nature Reviews Cancer, 16(2), 121-126.
Rick, J. W., Chandra, A., Dalle Ore, C., Nguyen, A. T., Yagnik, G., & Aghi, M. K. (2019). Fibronectin in malignancy: Cancer-specific alterations, protumoral effects, and therapeutic implications Paper presented at the Seminars in onco logy.
Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., Lichinitser, M., Dummer, R., Grange, F., Mortier, L., Chiarion-Sileni, V., Drucis, K., Krajsova, I., Hauschild, A., Lorigan, P., Wolter, P., Long, G. V., Flaherty, K., Nathan, P., … Schadendorf, D. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. New England Journal of Medicine, 372(1), 30-39.
Rocha-Lima, C. M., Soares, H. P., Raez, L. E., & Singal, R. (2007). EGFR targeting of solid tumors. Cancer Control, 14(3), 295-304.
Ronca, R., Sozzani, S., Presta, M., & Alessi, P. (2009). Delivering cytokines at tumor site: The immunocytokine-conjugated anti-EDB-fibronectin antibody case. Immunobiology, 214(9-10), 800-810.
Rossnagl, S., Altrock, E., Sens, C., Kraft, S., Rau, K., Milsom, M. D., Giese, T., Samstag, Y., & Nakchbandi, I. A. (2016). EDA-fibronectin originating from osteoblasts inhibits the immune response against cancer. PLoS Biology, 14(9), e1002562.
Roumen Pankov, K. M. (2002). Fibronectin at a glance Paper presented at the J Cell Sci 2002.
Ruoslahti, E. (1988). Fibronectin and its receptors. Annual Review of Biochemistry, 57, 375-413. MD Pierschbacher, E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309, 30.
Sainio, A., & Järveläinen, H. (2020). Extracellular matrix-cell interactions: Focus on therapeutic applications. Cellular Signalling, 66, 109487.
Sanjoy, S., Pursell, B. M., & Mercurio, A. M. (2013). IMP3 protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. Journal of Biological Chemistry, 288(18), 12569-12573.
Santini, M., Rainaldi, G., & Indovina, P. L. (2000). Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Critical Reviews in Oncology/Hematology, 36(2-3), 75-87.
Sauer, S., Erba, P. A., Petrini, M., Menrad, A., Giovannoni, L., Grana, C., Hirsch, B., Zardi, L., Paganelli, G., Mariani, G., Neri, D., Dürkop, H., & Menssen, H. D. (2009). Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood, 113(10), 2265-2274.
Saw, P. E., Park, J., Jon, S., & Farokhzad, O. C. (2017). A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 713-722.
Saw, P. E., Xu, X., Kang, B. R., Lee, J., Lee, Y. S., Kim, C., Kim, H., Kang, S. H., Na, Y. J., Moon, H. J., Kim, J. H., Park, Y. K., Yoon, W., Kim, J. H., Kwon, T. H., Choi, C., Jon, S., & Chong, K. (2021). Extra-domain B of fibronectin as an alternative target for drug delivery and a cancer diagnostic and prognostic biomarker for malignant glioma. Theranostics, 11(2), 941-957.
Scarpino, S., Stoppacciaro, A., Pellegrini, C., Marzullo, A., Zardi, L., Tartaglia, F., Viale, G., & Ruco, L. P. (1999). Expression of EDA/EDB isoforms of fibronectin in papillary carcinoma of the thyroid. The Journal of Pathology, 188(2), 163-167.
Schliemann, C., Wiedmer, A., Pedretti, M., Szczepanowski, M., Klapper, W., & Neri, D. (2009). Three clinical-stage tumor targeting antibodies reveal differential expression of oncofetal fibronectin and tenascin-C isoforms in human lymphoma. Leukemia Research, 33(12), 1718-1722.
Senthebane, D., Jonker, T., Rowe, A., Thomford, N., Munro, D., Dandara, C., Wonkam, A., Govender, D., Calder, B., Soares, N., Blackburn, J., Parker, M., & Dzobo, K. (2018). The role of tumor microenvironment in chemoresistance: 3D extracellular matrices as accomplices. International Journal of Molecular Sciences, 19(10), 2861.
Senthebane, D. A., Rowe, A., Thomford, N. E., Shipanga, H., Munro, D., Mazeedi, M. A. M. A., Almazyadi, H. A. M., Kallmeyer, K., Dandara, C., Pepper, M. S., Parker, M. I., & Dzobo, K. (2017). The role of tumor microenvironment in chemoresistance: To survive, keep your enemies closer. International Journal of Molecular Sciences, 18(7), 1586.
Serini, G., Bochaton-Piallat, M.-L., Ropraz, P., Geinoz, A., Borsi, L., Zardi, L., & Gabbiani, G. (1998). The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. Journal of Cell Biology, 142(3), 873-881.
Sethi, T., Rintoul, R. C., Moore, S. M., MacKinnon, A. C., Salter, D., Choo, C., Chilvers, E. R., Dransfield, I., Donnelly, S. C., Strieter, R., & Haslett, C. (1999). Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: A mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Medicine, 5(6), 662-668.
Shah, A. N., Summy, J. M., Zhang, J., Park, S. I., Parikh, N. U., & Gallick, G. E. (2007). Development and characterization of gemcitabine-resistant pancreatic tumor cells. Annals of Surgical Oncology, 14(12), 3629-3637.
Shanle, E. K., & Xu, W. (2010). Selectively targeting estrogen receptors for cancer treatment. Advanced Drug Delivery Reviews, 62(13), 1265-1276.
Shi, X., Liu, S., Kleeff, J., Friess, H., & Büchler, M. W. (2002). Acquired resistance of pancreatic cancer cells towards 5-Fluorouracil and gemcitabine is associated with altered expression of apoptosis-regulating genes. Oncology, 62(4), 354-362.
Smith, L., Watson, M. B., O'Kane, S. L., Drew, P. J., Lind, M. J., & Cawkwell, L. (2006). The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Molecular Cancer Therapeutics, 5(8), 2115-2120.
Sönmez, H., Süer, S., Karaarslan, I., Baloğlu, H., & Kökoğlu, E. (1995). Tissue fibronectin levels of human prostatic cancer, as a tumor marker. Cancer Biochemistry Biophysics, 15(2), 107-110.
Sosa Iglesias, V., Giuranno, L., Dubois, L. J., Theys, J., & Vooijs, M. (2018). Drug resistance in non-small cell lung cancer: a potential for NOTCH targeting? Frontiers in Oncology, 2018 8, 267.
Souglakos, J., Androulakis, N., Syrigos, K., Polyzos, A., Ziras, N., Athanasiadis, A., Kakolyris, S., Tsousis, S., Kouroussis, C. h, Vamvakas, L., Kalykaki, A., Samonis, G., Mavroudis, D., & Georgoulias, V. (2006). FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): A multicentre randomised phase III trial from the Hellenic Oncology Research Group (HORG). British Journal of Cancer, 94(6), 798-805.
de Sousa Cavalcante, L., & Monteiro, G. (2014). Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. European Journal of Pharmacology, 741, 8-16.
Spada, S., Tocci, A., Di Modugno, F., & Nisticò, P. (2021). Fibronectin as a multiregulatory molecule crucial in tumor matrisome: From structural and functional features to clinical practice in oncology. Journal of Experimental & Clinical Cancer Research: CR, 40(1), 102.
Speziale, P., Arciola, C. R., & Pietrocola, G. (2019). Fibronectin and its role in human infective diseases. Cells, 8(12), 1516.
Sponziello, M., Rosignolo, F., Celano, M., Maggisano, V., Pecce, V., De Rose, R. F., Lombardo, G. E., Durante, C., Filetti, S., Damante, G., Russo, D., & Bulotta, S. (2016). Fibronectin-1 expression is increased in aggressive thyroid cancer and favors the migration and invasion of cancer cells. Molecular and Cellular Endocrinology, 431, 123-132.
van der Straaten, H. M., Canninga-van Dijk, M. R., Verdonck, L. F., Castigliego, D., Eric Borst, H. P., Aten, J., & Fijnheer, R. (2004). Extra-domain-A fibronectin: A new marker of fibrosis in cutaneous graft-versus-host disease. Journal of Investigative Dermatology, 123(6), 1057-1062.
Sui, M., Zhang, H., & Fan, W. (2011). The role of estrogen and estrogen receptors in chemoresistance. Current Medicinal Chemistry, 18(30), 4674-4683.
Sun, T., & Yang, Q. (2020). Chemoresistance-associated alternative splicing signatures in serous ovarian cancer. Oncology Letters, 20(1), 420-430.
Sun, X., Fa, P., Cui, Z., Xia, Y., Sun, L., Li, Z., Tang, A., Gui, Y., & Cai, Z. (2014). The EDA-containing cellular fibronectin induces epithelial-mesenchymal transition in lung cancer cells through integrin α9β1-mediated activation of PI3-K/AKT and Erk1/2. Carcinogenesis, 35(1), 184-191.
Swain, S. M., Baselga, J., Kim, S.-B., Ro, J., Semiglazov, V., Campone, M., Ciruelos, E., Ferrero, J. M., Schneeweiss, A., Heeson, S., Clark, E., Ross, G., Benyunes, M. C., & Cortés, J. (2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. New England Journal of Medicine, 372(8), 724-734.
Syn, N. L., Teng, M. W. L., Mok, T. S. K., & Soo, R. A. (2017). De-novo and acquired resistance to immune checkpoint targeting. The lancet oncology, 18(12), e731-e741.
Tao, L., Huang, G., Wang, R., Pan, Y., He, Z., Chu, X., Song, H., & Chen, L. (2016). Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Scientific Reports, 6(1), 38408.
Thorn, C. F., Oshiro, C., Marsh, S., Hernandez-Boussard, T., McLeod, H., Klein, T. E., & Altman, R. B. (2011). Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenetics and Genomics, 21(7), 440-446.
Topalovski, M., & Brekken, R. A. (2016). Matrix control of pancreatic cancer: New insights into fibronectin signaling. Cancer Letters, 381(1), 252-258.
Toschi, L., Finocchiaro, G., Bartolini, S., Gioia, V., & Cappuzzo, F. (2005). Role of gemcitabine in cancer therapy. Future Medicine, 1(1), 7-17. https://doi.org/10.1517/14796694.1.1.7
Van Triest, B., Pinedo, H. M., Van Hensbergen, Y., Smid, K., Telleman, F., Schoenmakers, P. S., van der Wilt, C. L., van Laar, J. A., Noordhuis, P., Jansen, G., & Peters, G. J. (1999). Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 5(3), 643-654.
Tunali, G., Yanik, H., Ozturk, S. C., Demirkol-Canli, S., Efthymiou, G., Yilmaz, K. B., Van obberghen-Schilling, E., & Esendagli, G. (2023). A positive feedback loop driven by fibronectin and IL-1β sustains the inflammatory microenvironment in breast cancer. Breast Cancer Research, 25(1), 27.
Vaidya, A., Ayat, N., Buford, M., Wang, H., Shankardass, A., Zhao, Y., Gilmore, H., Wang, Z., & Lu, Z. R. (2020). Noninvasive assessment and therapeutic monitoring of drug-resistant colorectal cancer by MR molecular imaging of extradomain-B fibronectin. Theranostics, 10(24), 11127-11143.
Vaidya, A., Wang, H., Qian, V., Gilmore, H., & Lu, Z.-R. (2020). Overexpression of extradomain-B fibronectin is associated with invasion of breast cancer cells. Cells, 9(8), 1826.
Vaidya, A. M., Wang, H., Qian, V., & Lu, Z.-R. (2020). Extradomain-B fibronectin is a molecular marker of invasive breast cancer cells. bioRxiv, 9(8), 1826. https://doi.org/10.3390/cells9081826
Vázquez, P. F., Carlini, M. J., Daroqui, M. C., Colombo, L., Dalurzo, M. L., Smith, D. E., Grasselli, J., Pallotta, M. G., Ehrlich, M., Bal de Kier Joffé, E. D., & Puricelli, L. (2013). TGF-beta specifically enhances the metastatic attributes of murine lung adenocarcinoma: implications for human non-small cell lung cancer. Clinical & Experimental Metastasis, 30(8), 993-1007.
Violette, S., Poulain, L., Dussaulx, E., Pepin, D., Faussat, A. M., Chambaz, J., Lacorte, J. M., Staedel, C., & Lesuffleur, T. (2002). Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-XL in addition to Bax and p53 status. International Journal of Cancer, 98(4), 498-504.
Vodenkova, S., Buchler, T., Cervena, K., Veskrnova, V., Vodicka, P., & Vymetalkova, V. (2020). 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacology & Therapeutics, 206, 107447.
Vulsteke, C., Pfeil, A. M., Schwenkglenks, M., Pettengell, R., Szucs, T. D., Lambrechts, D., Peeters, M., van Dam, P., Dieudonné, A. S., Hatse, S., Neven, P., Paridaens, R., & Wildiers, H. (2014). Impact of genetic variability and treatment-related factors on outcome in early breast cancer patients receiving (neo-) adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide, and docetaxel. Breast Cancer Research and Treatment, 147, 557-570.
Wang, B., Ma, N., Zheng, X., Li, X., Ma, X., Hu, J., Cao, B., & Rhim, T. (2020). GDF15 repression contributes to 5-fluorouracil resistance in human colon cancer by regulating epithelial-mesenchymal transition and apoptosis. BioMed Research International, 2020, 1-9.
Wang, Y., Jiang, L., Zhang, Y., Lu, Y., Li, J., Wang, H., Yao, D., & Wang, D. (2020). Fibronectin-targeting and cathepsin B-activatable theranostic nanoprobe for MR/fluorescence imaging and enhanced photodynamic therapy for triple negative breast cancer. ACS Applied Materials & Interfaces, 12(30), 33564-33574.
Ward, A., Balwierz, A., Zhang, J. D., Küblbeck, M., Pawitan, Y., Hielscher, T., Wiemann, S., & Sahin, Ö. (2013). Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene, 32(9), 1173-1182.
Wong, S.-F. (2005). Cetuximab: An epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clinical Therapeutics, 27(6), 684-694.
Xiang, L., Xie, G., Ou, J., Wei, X., Pan, F., & Liang, H. (2012). The extra domain A of fibronectin increases VEGF-C expression in colorectal carcinoma involving the PI3K/AKT signaling pathway. PLoS One, 7(4), e35378.
Xing, H., Weng, D., Chen, G., Tao, W., Zhu, T., Yang, X., Meng, L., Wang, S., Lu, Y., & Ma, D. (2008). Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Letters, 261(1), 108-119.
Xiong, G.-F., & Xu, R. (2016). Function of cancer cell-derived extracellular matrix in tumor progression. Journal of Cancer Metastasis and Treatment, 2, 357-364.
Yared, J., & Tkaczuk, K. (2012). Update on taxane development: New analogs and new formulations. Drug Des Devel Ther, 6, 371-384.
Ye, Y., Zhang, R., & Feng, H. (2020). Fibronectin promotes tumor cells growth and drugs resistance through a CDC42-YAP-dependent signaling pathway in colorectal cancer. Cell Biology International, 44(9), 1840-1849.
Yee, D., & Lee, A. V. (2000). Crosstalk between the insulin-like growth factors and estrogens in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 5(1), 107-115.
You, D., Jung, S. P., Jeong, Y., Bae, S. Y., Lee, J. E., & Kim, S. (2017). Fibronectin expression is upregulated by PI-3K/Akt activation in tamoxifen-resistant breast cancer cells. BMB Reports, 50(12), 615-620.
Yousif, N. G. (2014). Fibronectin promotes migration and invasion of ovarian cancer cells through up-regulation of FAK-PI 3 K/A kt pathway. Cell Biology International, 38(1), 85-91.
Yuan, J., Liu, M., Yang, L., Tu, G., Zhu, Q., Chen, M., & Li, Z. (2015). Acquisition of epithelial-mesenchymal transition phenotype in the tamoxifen-resistant breast cancer cell: A new role for G protein-coupled estrogen receptor in mediating tamoxifen resistance through cancer-associated fibroblast-derived fibronectin and β1-integrin signaling pathway in tumor cells. Breast Cancer Research, 17(1), 1-18.
Zahreddine, H., & Borden, K. L. B. (2013). Mechanisms and insights into drug resistance in cancer. Frontiers in Pharmacology, 4, 28.
Zerlauth, G., & Wolf, G. (1984). Plasma fibronectin as a marker for cancer and other diseases. The American Journal of Medicine, 77(4), 685-689.
Zhang, C.-J., Shen, Z.-J., Pan, C.-W., Zhong, S., Li, T., & Zhang, M.-G. (2012). Engagement of integrinβ1 induces resistance of bladder cancer cells to mitomycin-C. Urology, 79(3), 638-643.
Zhang, N., Yin, Y., Xu, S.-J., & Chen, W.-S. (2008). 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules, 13(8), 1551-1569.
Zhang, S., Yang, Y., Weng, W., Guo, B., Cai, G., Ma, Y., & Cai, S. (2019). Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer. Journal of Experimental & Clinical Cancer Research: CR, 38(1), 14.
Zhang, W., Feng, M., Zheng, G., Chen, Y., Wang, X., Pen, B., Yin, J., Yu, Y., & He, Z. (2012). Chemoresistance to 5-fluorouracil induces epithelial-mesenchymal transition via up-regulation of Snail in MCF7 human breast cancer cells. Biochemical and Biophysical Research Communications, 417(2), 679-685.
Zheng, H.-C. (2017). The molecular mechanisms of chemoresistance in cancers. Oncotarget, 8(35), 59950-59964.
Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T., Yang, W., Tian, C., Miao, Z., Wang, T., & Yang, S. (2021). Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy, 6(1), 201.

Auteurs

Faizah Farooq (F)

Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.

Asif Amin (A)

Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.

Umer Majeed Wani (UM)

Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.

Asif Lone (A)

Department of Biochemistry, Deshbandu College, University of Delhi, Delhi, India.

Raies A Qadri (RA)

Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH