Cellular Exchange Imaging (CEXI): Evaluation of a diffusion model including water exchange in cells using numerical phantoms of permeable spheres.


Journal

Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245

Informations de publication

Date de publication:
10 2023
Historique:
revised: 02 05 2023
received: 26 12 2022
accepted: 14 05 2023
medline: 31 7 2023
pubmed: 6 6 2023
entrez: 6 6 2023
Statut: ppublish

Résumé

Biophysical models of diffusion MRI have been developed to characterize microstructure in various tissues, but existing models are not suitable for tissue composed of permeable spherical cells. In this study we introduce Cellular Exchange Imaging (CEXI), a model tailored for permeable spherical cells, and compares its performance to a related Ball & Sphere (BS) model that neglects permeability. We generated DW-MRI signals using Monte-Carlo simulations with a PGSE sequence in numerical substrates made of spherical cells and their extracellular space for a range of membrane permeability. From these signals, the properties of the substrates were inferred using both BS and CEXI models. CEXI outperformed the impermeable model by providing more stable estimates cell size and intracellular volume fraction that were diffusion time-independent. Notably, CEXI accurately estimated the exchange time for low to moderate permeability levels previously reported in other studies ( This study highlights the importance of modeling the exchange time to accurately quantify microstructure properties in permeable cellular substrates. Future studies should evaluate CEXI in clinical applications such as lymph nodes, investigate exchange time as a potential biomarker of tumor severity, and develop more appropriate tissue models that account for anisotropic diffusion and highly permeable membranes.

Identifiants

pubmed: 37279007
doi: 10.1002/mrm.29720
doi:

Substances chimiques

Water 059QF0KO0R

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1625-1640

Informations de copyright

© 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Références

Alexander DC, Hubbard PL, Hall MG, et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage. 2010;52:1374-1389.
Hui Z, Torben S, Wheeler-Kingshott Claudia A, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000-1016.
Jespersen SN, Kroenke CD, Leif Ø, Ackerman Joseph JH, Yablonskiy DA. Modeling dendrite density from magnetic resonance diffusion measurements. Neuroimage. 2007;34:1473-1486.
Maira T, Torben S, Alexander DC, Wheeler-Kingshott CA, Gandini ZH. Bingham-NODDI: mapping anisotropic orientation dispersion of neurites using diffusion MRI. Neuroimage. 2016;133:207-223.
Enrico K, Kelm ND, Carson RP, Does MD, Alexander DC. Multi-compartment microscopic diffusion imaging. Neuroimage. 2016;139:346-359.
Novikov DS, Jelle V, Jelescu IO, Els F. Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI. Neuroimage. 2018;174:518-538.
Novikov DS, Els F, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR Biomed. 2019;32:37-54.
Marco P, Andrada I, Michele G, et al. SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage. 2020;215:116835.
Jelescu IO, Alexandre S, Françoise G, Marco P, Novikov DS. Neurite exchange imaging (NEXI): a minimal model of diffusion in gray matter with inter-compartment water exchange. Neuroimage. 2022;256:119277.
Olesen JL, Leif Ø, Noam S, Jespersen SN. Diffusion time dependence, power-law scaling, and exchange in gray matter. Neuroimage. 2022;251:2-4.
Olivier R, Veronica WK, Minh HD, Zaim WY, Novikov DS, Gene KS. Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas. NMR Biomed. 2016;29:1350-1363.
Gogulan K, Wheeler RJ, Tear LR, Farrer NJ, Stephen F, Baldwin AJ. INDIANA: an in-cell diffusion method to characterize the size, abundance and permeability of cells. J Magn Reson. 2019;302:1-13.
Hua L, Xiaoyu J, Jingping X, Gore JC, Junzhong X. Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI. Magn Reson Med. 2017;77:2239-2249.
Xiaoyu J, Hua L, Jingping X, et al. In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy. Magn Reson Med. 2017;78:156-164.
Olivier R, Veronica WK, Minh HD, Zaim WY, Novikov DS, Gene KS. Surface-to-volume ratio mapping of tumor microstructure using oscillating gradient diffusion weighted imaging. Magn Reson Med. 2016;76:237-247.
Eletheria P, Simon W-S, Bernard S, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 2014;74:1902-1912.
Andrada I, Ines S, Antonio G, et al. Higher-order diffusion MRI characterization of mesorectal lymph nodes in rectal cancer. Magn Reson Med. 2020;84:348-364.
Sahalan M. Diffusion-Weighted Imaging of Lymph Node Tissue. Thesis. University of Sydney. 2018.
Mami I, Olivier R, Tomokazu T, et al. Characterization of glioma microcirculation and tissue features using intravoxel incoherent motion magnetic resonance imaging in a rat brain model. Invest Radiol. 2014;49:485-490.
Jelescu IO, Marco P, Francesca B, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods. 2020;344:108861.
Yang Donghan M, Huettner James E, Larry BG, Neil Jeffrey J, Garbow Joel R, Ackerman Joseph JH. Intracellular water preexchange lifetime in neurons and astrocytes. Magn Reson Med. 2018;79:1616-1627.
Zhao L, Kroenke CD, Song J, Piwnica-Worms D, Ackerman JJH, Neil JJ. Intracellular water-specific MR of microbead-adherent cells: the HeLa cell intracellular water exchange lifetime. NMR Biomed. 2008;21:159-164.
Olivier R. Time-dependent diffusion MRI in cancer: tissue modeling and applications. Front Phys. 2017;5:58.
Xiaoyu J, Devan SP, Jingping X, Gore JC, Junzhong X. Improving MR cell size imaging by inclusion of transcytolemmal water exchange. NMR Biomed. 2022;35:4-6.
Manisha A, Smith MD, Calabresi PA. Diffusion-time dependence of diffusional kurtosis in the mouse brain. Magn Reson Med. 2020;84:1564-1578.
Samo L, Markus N, Jimmy L, Freddy S, Daniel T. Apparent exchange rate mapping with diffusion MRI. Magn Reson Med. 2011;66:356-365.
Jörg K. NMR self-diffusion studies in heterogeneous systems. Adv Colloid Interface Sci. 1985;23:129-148.
Stanisz GJ, Aaron S, Wright GA, Mark HR. An analytical model of restricted diffusion in bovine optic nerve. Magn Reson Med. 1997;37:103-111.
Jonathan R-P, David R, Alonso R-M, Jorge C-RE, Gabriel G, Philippe TJ. Robust Monte-Carlo simulations in diffusion-MRI: effect of the substrate complexity and parameter choice on the reproducibility of results. Front Neuroinform. 2020;14:8.
Hsi LH, Els F, Novikov DS. Realistic microstructure simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images. J Neurosci Methods. 2021;350:6.
Hall MG, Alexander DC. Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI. IEEE Trans Med Imaging. 2009;28:1354-1364.
Lorenza B, Gloria M, Markus N. Monte Carlo simulations of water exchange through myelin wraps: implications for diffusion MRI. IEEE Trans Med Imaging. 2019;38:1438-1445.
Els F, Novikov DS, Jensen JH, Helpern JA. Monte Carlo study of a two-compartment exchange model of diffusion. NMR Biomed. 2010;23:711-724.
Ali A, Ilya B, Eija J, Jussi T, Alejandra S. Automated 3D axonal morphometry of white matter. Sci Rep. 2019;9:1-16.
Hsi LH, Antonios P, Lyoung KS, Novikov Dmitry S, Els F. A time-dependent diffusion MRI signature of axon caliber variations and beading. Commun Biol. 2020;3:1-13.
Mariam A, Martin KH, Jonathan R-P, et al. Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure-function relationship. Proc Natl Acad Sci U S A. 2020;117:33649-33659.
Eleftheria P, Torben S, Bernard S, Hall Matt G, Lythgoe Mark F, Alexander DC. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage. 2012;59:2241-2254.
Aaron S, Jianhui Z, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med. 1995;33:697-712.
Fatma Z, Shehata SM, Warda MH, Abo Wardo MH, Alekrashy MA. Diagnostic value of MRI for predicting axillary lymph nodes metastasis in newly diagnosed breast cancer patients: diffusion-weighted MRI. Egypt J Radiol and Nucl Med. 2016;47:659-667.
Zhao M, Wu Q, Guo L, Zhou L, Radiology KF. European Journal, 2020. Magnetic Resonance Imaging Features for Predicting Axillary Lymph Node Metastasis in Patients with Breast Cancer. Elsevier; 2020.
Suh CH, Choi YJ, Baek JH, Lee JH. The diagnostic value of diffusion-weighted imaging in differentiating metastatic lymph nodes of head and neck squamous cell carcinoma: a systematic review and meta-analysis. Am J Neuroradiol. 2018;39:1889-1895.
Yasui O, Sato M. Experimental a Kamada the Tohoku, 2009. Diffusion-weighted imaging in the detection of lymph node metastasis in colorectal cancer. Jstagejstgojp. 2009;218:177-183.
Cheung RK, Grinstein S, Gelfand EW. Volume regulation by human lymphocytes. Identification of differences between the two major lymphocyte subpopulations. J Clin Investig. 1982;70:632-638.
Grinstein S, Clarke CA, Rothstein A, Gelfand EW. Volume-induced anion conductance in human B lymphocytes is cation independent. Am J Physiol Cell Physiol. 1983;245:C160-C163.
Sebastian W, Dieter K. Activation-driven death of human T cell clones: time course kinetics of the induction of cell shrinkage, DNA fragmentation, and cell death. Cell Immunol. 1993;148:234-241.
Bankhead P, Loughrey MB, Fernandez JA, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:1-7.
Mukherjee A, Wu D, Hunter CD, Shapiro MG. Non-invasive imaging using reporter genes altering cellular water permeability. Nat Commun. 2016;7:13891.
Novikov DS, Jensen JH, Helpern JA, Els F. Revealing mesoscopic structural universality with diffusion. Proc Natl Acad Sci U S A. 2014;111:5088-5093.
Burcaw LM, Els F, Novikov DS. Mesoscopic structure of neuronal tracts from time-dependent diffusion. Neuroimage. 2015;114:18-37.
Maryam A, Markus N, Marco P, Jones DK. SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI. Neuroimage. 2021;237:118183.
Elisenda B-C, Edward J, Alessandro D, et al. VERDICT-AMICO: ultrafast fitting algorithm for non-invasive prostate microstructure characterization. NMR Biomed. 2019;32:e4019.
Neuman CH. Spin echo of spins diffusing in a bounded medium. J Chem Phys. 1974;60:4508-4511.
Eleftherios G, Matthew B, Bagrat A, et al. Dipy, a library for the analysis of diffusion MRI data. Front Neuroinform. 2014;8:8.
Alexander DC. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn Reson Med. 2008;60:439-448.
Lourakis MIA. Levmar: Levenberg-Marquardt nonlinear least squares algorithms in {C}/{C}++. 2004.
Jin Z, Gregory L, Linda M, Els F, Novikov DS, Gene KS. Measurement of cellular-interstitial water exchange time in tumors based on diffusion-time-dependent diffusional kurtosis imaging. NMR Biomed. 2021;34:e4496.
Jelescu IO, Jelle V, Els F, Novikov DS. Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR Biomed. 2016;29:33-47.
Marco P, Alexander Daniel C, Hui Z. Large-scale analysis of brain cell morphometry informs microstructure modelling of gray matter. Proc Int Soc Magn Reson Med. 2021;Abstract 0642.
Nicolas K, Silva AR, Jelescu IO. Intra- and extra-axonal axial diffusivities in the white matter: which one is faster? Neuroimage. 2018;181:314-322.
Bibek D, Marco R, Elias K, Kiselev VG. Intra-axonal diffusivity in brain white matter. Neuroimage. 2019;189:543-550.
Olesen JL, Leif Ø, Noam S, Jespersen SN. Beyond the diffusion standard model in fixed rat spinal cord with combined linear and planar encoding. Neuroimage. 2021;231:117849.
Noam S, Evren Ö, Basser PJ, Yoram C. Accurate noninvasive measurement of cell size and compartment shape anisotropy in yeast cells using double-pulsed field gradient MR. NMR Biomed. 2012;25:236-246.
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianus A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods. 2021;348:108989.

Auteurs

Rémy Gardier (R)

Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Juan Luis Villarreal Haro (JL)

Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Erick J Canales-Rodríguez (EJ)

Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Ileana O Jelescu (IO)

Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL) (CHUV-UNIL), Lausanne, Switzerland.
School of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland.

Gabriel Girard (G)

Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada.

Jonathan Rafael-Patiño (J)

Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL) (CHUV-UNIL), Lausanne, Switzerland.

Jean-Philippe Thiran (JP)

Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL) (CHUV-UNIL), Lausanne, Switzerland.
CIBM Center for Biomedical Imaging, Lausanne, Switzerland.

Articles similaires

Humans Ketamine Propofol Pulmonary Atelectasis Female
Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH