Three- instead of two-dimensional evaluation of key parameters alters the choice of the lowest instrumented vertebra in Lenke 1 and 2 AIS patients.
Adolescent idiopathic scoliosis
Lenke lumbar modifier
Lowest instrumented vertebra (LIV)
Stable vertebra
Three-dimensional analysis
Journal
Spine deformity
ISSN: 2212-1358
Titre abrégé: Spine Deform
Pays: England
ID NLM: 101603979
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
14
03
2023
accepted:
20
05
2023
medline:
15
8
2023
pubmed:
7
6
2023
entrez:
7
6
2023
Statut:
ppublish
Résumé
Treatment of AIS, a three-dimensional spinal (3D) deformity, is guided by a two-dimensional (2D) evaluation. Novel 3D approaches that address the 2D limitations have not been adopted in AIS care due to their lengthy and complex 3D reconstruction procedures. This study aims to introduce a simple 3D method that translates the 2D key parameters (Stable vertebra (SV), Lenke lumbar modifier, Neutral vertebra (NV)) into 3D and to quantitively compare these 3D corrected parameters to the 2D assessment. The key parameters of 79 surgically treated Lenke 1 and 2 patients were measured in 2D by two experienced spine surgeons. Next, these key parameters were measured in 3D by indicating relevant landmarks on biplanar radiographs and using the 'true' 3D CSVL which was perpendicular to the pelvic plane. Differences between the 2D and 3D analysis were examined. A 2D-3D mismatch was identified in 33/79 patients (41.8%) for at least one of the key parameters. More specifically, a 2D-3D mismatch was identified in 35.4% of patients for the Sag SV, 22.5% of patients for the SV and 17.7% of patients for the lumbar modifier. No differences in L4 tilt and NV rotation were found. The findings highlight that a 3D evaluation alters the choice of the LIV in Lenke 1 and 2 AIS patients. Although, the true impact of this more precise 3D measurement on preventing poor radiographic outcome needs further investigation, the results are a first step toward establishing a basis for 3D assessments in daily practice.
Identifiants
pubmed: 37284907
doi: 10.1007/s43390-023-00711-z
pii: 10.1007/s43390-023-00711-z
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1137-1143Informations de copyright
© 2023. The Author(s), under exclusive licence to Scoliosis Research Society.
Références
Ohashi M, Bastrom T, Marks M, Bartley C, Newton O (2020) The benefits of sparing lumbar motion segments in spinal fusion for adolescent idiopathic scoliosis are evident at 10 years postoperatively. Spine (Phila Pa 1976) 45:422–763
doi: 10.1097/BRS.0000000000003373
Sarwahi V, Wendolowski S, Gecelter R, Maguire K, Gambassi M, Orlando D et al (2018) When do patients return to physical activities and athletics after scoliosis surgery? Spine (Phila Pa 1976) 43:167–171. https://doi.org/10.1097/BRS.0000000000002284
doi: 10.1097/BRS.0000000000002284
pubmed: 28604495
Fabricant PD, Admoni S, Green DW, Ipp LS, Widmann RF (2012) Return to athletic activity after posterior spinal fusion for adolescent idiopathic scoliosis. J Pediatr Orthop 32:259–265. https://doi.org/10.1097/BPO.0b013e31824b285f
doi: 10.1097/BPO.0b013e31824b285f
pubmed: 22411331
Fischer CR, Lenke LG, Bridwell KH, Boachie-Adjei O, Gupta M, Kim YJ (2018) Optimal lowest instrumented vertebra for thoracic adolescent idiopathic scoliosis. Spine Deform 6:250–256. https://doi.org/10.1016/J.JSPD.2017.10.002
doi: 10.1016/J.JSPD.2017.10.002
pubmed: 29735133
Liu CW, Lenke LG, Tan LA, Oh T, Chao KH, Lin SD et al (2020) Selection of the lowest instrumented vertebra and relative odds ratio of distal adding-on for Lenke Type 1A and 2A curves in adolescent idiopathic scoliosis: a systematic review and meta-analysis. Neurospine 17:902. https://doi.org/10.14245/NS.2040234.117
doi: 10.14245/NS.2040234.117
pubmed: 33401869
pmcid: 7788412
O’Brien M, Kulklo T, Blanke K, Lenke L. Radiographic measurement manual. Spinal deform study. Gr Radiogr Meas Man 2008:120.
Sangole A, Aubin CE, Labelle H, Lenke L, Jackson R, Newton P et al (2010) The central hip vertical axis: a reference axis for the scoliosis research society three-dimensional classification of idiopathic scoliosis. Spine (Phila Pa 1976) 35:530–534. https://doi.org/10.1097/BRS.0b013e3181da38b8
doi: 10.1097/BRS.0b013e3181da38b8
Suk S-I, Lee S-M, Chung E-R, Kim J-H, Kim W-J, Sohn H-M (2003) Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis. Spine (Phila Pa 1976) 28:484–491. https://doi.org/10.1097/01.BRS.0000048653.75549.40
doi: 10.1097/01.BRS.0000048653.75549.40
pubmed: 12616162
Illés T, Tunyogi-Csapó M, Somoskeöy S (2011) Breakthrough in three-dimensional scoliosis diagnosis: Significance of horizontal plane view and vertebra vectors. Eur Spine J 20:135–143. https://doi.org/10.1007/S00586-010-1566-8
doi: 10.1007/S00586-010-1566-8
pubmed: 20821027
Lam GC, Hill DL, Le LH, Raso JV, Lou EH (2008) Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods. Scoliosis 3:16. https://doi.org/10.1186/1748-7161-3-16
doi: 10.1186/1748-7161-3-16
pubmed: 18976498
pmcid: 2587463
Kadoury S, Cheriet F, Laporte C, Labelle H (2007) A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities. Med Biol Eng Comput 45:591–602. https://doi.org/10.1007/s11517-007-0182-1
doi: 10.1007/s11517-007-0182-1
pubmed: 17530454
Pasha S, Cahill PJ, Dormans JP, Flynn JM (2016) Characterizing the differences between the 2D and 3D measurements of spine in adolescent idiopathic scoliosis. Eur Spine J 25:3137–3145. https://doi.org/10.1007/s00586-016-4582-5
doi: 10.1007/s00586-016-4582-5
pubmed: 27146809
Labelle H, Aubin C-E, Jackson R, Lenke L, Newton P, Parent S (2011) Seeing the spine in 3D. J Pediatr Orthop 31:S37-45. https://doi.org/10.1097/BPO.0b013e3181fd8801
doi: 10.1097/BPO.0b013e3181fd8801
pubmed: 21173617
Sangole AP, Aubin C-E, Labelle H, Stokes IAF, Lenke LG, Jackson R et al (2009) Three-dimensional classification of thoracic scoliotic curves. Spine (Phila Pa 1976) 34:91–99. https://doi.org/10.1097/BRS.0b013e3181877bbb
doi: 10.1097/BRS.0b013e3181877bbb
pubmed: 19127167
King H, Moe J, Bradford D, Winter RB (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Jt Surg 65:1302–1313
doi: 10.2106/00004623-198365090-00012
Overbergh T, Severijns P, Beaucage-Gauvreau E, Jonkers I, Moke L, Scheys L (2020) Development and validation of a modeling workflow for the generation of image-based, subject-specific thoracolumbar models of spinal deformity. J Biomech 110:109946. https://doi.org/10.1016/j.jbiomech.2020.109946
doi: 10.1016/j.jbiomech.2020.109946
pubmed: 32827766
Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Jt Surg Am 83:1169–1181. https://doi.org/10.2106/00004623-200108000-00006
doi: 10.2106/00004623-200108000-00006
Cho RH, Yaszay B, Bartley CE, Bastrom TP, Newton PO (2012) Which lenke 1A curves are at the greatest risk for adding-on… and why? Spine 37:1384–1390. https://doi.org/10.1097/BRS.0B013E31824BAC7A
doi: 10.1097/BRS.0B013E31824BAC7A
pubmed: 22322370
Erickson MA, Baulesh DM (2011) Lowest instrumented vertebra selection in AIS. J Pediatr Orthop 31:S69–S76. https://doi.org/10.1097/BPO.0B013E318202BFCD
doi: 10.1097/BPO.0B013E318202BFCD
pubmed: 21173622
Cho KJ, Lenke LG, Bridwell KH, Kamiya M, Sides B (2009) Selection of the optimal distal fusion level in posterior instrumentation and fusion for thoracic hyperkyphosis: the sagittal stable vertebra concept. Spine 34:765–770. https://doi.org/10.1097/BRS.0B013E31819E28ED
doi: 10.1097/BRS.0B013E31819E28ED
pubmed: 19365243
Moke L, Overbergh T, Severijns P, Schelfaut S, Moens P, Van de loock K et al (2019) The transverse gravitational deviation index, a novel gravity line-related spinal parameter, relates to balance control and health-related quality of life in adults with spinal deformity. Spine (Phila Pa 1976) 45:1. https://doi.org/10.1097/BRS.0000000000003301
doi: 10.1097/BRS.0000000000003301
Severijns P, Overbergh T, Thauvoye A, Baudewijns J, Monari D, Moke L et al (2020) A subject-specific method to measure dynamic spinal alignment in adult spinal deformity. Spine J. https://doi.org/10.1016/j.spinee.2020.02.004
doi: 10.1016/j.spinee.2020.02.004
pubmed: 32058084
King HA, Moe JH, Bradford DS, Winter RB (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Jt Surg Ser A 65:1302–1313. https://doi.org/10.2106/00004623-198365090-00012
doi: 10.2106/00004623-198365090-00012
Rose PS, Lenke LG (2007) Classification of operative adolescent idiopathic scoliosis: treatment guidelines. Orthop Clin N Am 38:521–529. https://doi.org/10.1016/J.OCL.2007.06.001
doi: 10.1016/J.OCL.2007.06.001
Wang PY, Chen CW, Lee YF, Hu MH, Wang TM, Lai PL et al (2021) Distal junctional kyphosis after posterior spinal fusion in Lenke 1 and 2 adolescent idiopathic scoliosis-exploring detailed features of the sagittal stable vertebra concept. Glob Spine J 13:1112–1119. https://doi.org/10.1177/21925682211019692
doi: 10.1177/21925682211019692
Potter BK, Rosner MK, Lehman RA, Polly DW, Schroeder TM, Kuklo TR (2005) Reliability of end, neutral, and stable vertebrae identification in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 30:1658–1663. https://doi.org/10.1097/01.BRS.0000170290.05381.9A
doi: 10.1097/01.BRS.0000170290.05381.9A
pubmed: 16025037