The role of pain modulation pathway and related brain regions in pain.

ascending pain modulation descending pain modulation pain pain matrix

Journal

Reviews in the neurosciences
ISSN: 2191-0200
Titre abrégé: Rev Neurosci
Pays: Germany
ID NLM: 8711016

Informations de publication

Date de publication:
15 12 2023
Historique:
received: 25 03 2023
accepted: 18 05 2023
medline: 27 11 2023
pubmed: 8 6 2023
entrez: 8 6 2023
Statut: epublish

Résumé

Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.

Identifiants

pubmed: 37288945
pii: revneuro-2023-0037
doi: 10.1515/revneuro-2023-0037
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

899-914

Informations de copyright

© 2023 Walter de Gruyter GmbH, Berlin/Boston.

Références

Ahrens, S., Wu, M.V., Furlan, A., Hwang, G.R., Paik, R., Li, H., Penzo, M.A., Tollkuhn, J., and Li, B. (2018). A central extended amygdala circuit that modulates anxiety. J. Neurosci. 38: 5567–5583, https://doi.org/10.1523/jneurosci.0705-18.2018 .
doi: 10.1523/jneurosci.0705-18.2018
Allen, H.N., Bobnar, H.J., and Kolber, B.J. (2021). Left and right hemispheric lateralization of the amygdala in pain. Prog. Neurobiol. 196: 101891, https://doi.org/10.1016/j.pneurobio.2020.101891 .
doi: 10.1016/j.pneurobio.2020.101891
Allsop, S.A., Wichmann, R., Mills, F., Burgos-Robles, A., Chang, C.J., Felix-Ortiz, A.C., Vienne, A., Beyeler, A., Izadmehr, E.M., Glober, G., et al.. (2018). Corticoamygdala transfer of socially derived information gates observational learning. Cell 173: 1329–1342, https://doi.org/10.1016/j.cell.2018.04.004 .
doi: 10.1016/j.cell.2018.04.004
Alshelh, Z., Di Pietro, F., Youssef, A.M., Reeves, J.M., Macey, P.M., Vickers, E.R., Peck, C.C., Murray, G.M., and Henderson, L.A. (2016). Chronic neuropathic pain: it’s about the rhythm. J. Neurosci. 36: 1008–1018, https://doi.org/10.1523/jneurosci.2768-15.2016 .
doi: 10.1523/jneurosci.2768-15.2016
Apkarian, A.V., Bushnell, M.C., Treede, R.D., and Zubieta, J.K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9: 463–484, https://doi.org/10.1016/j.ejpain.2004.11.001 .
doi: 10.1016/j.ejpain.2004.11.001
Apkarian, V.A., Hashmi, J.A., and Baliki, M.N. (2011). Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 152: S49–S64, https://doi.org/10.1016/j.pain.2010.11.010 .
doi: 10.1016/j.pain.2010.11.010
Autry, A.E. and Monteggia, L.M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 64: 238–258, https://doi.org/10.1124/pr.111.005108 .
doi: 10.1124/pr.111.005108
Bagley, E.E. and Ingram, S.L. (2020). Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 173: 108131, https://doi.org/10.1016/j.neuropharm.2020.108131 .
doi: 10.1016/j.neuropharm.2020.108131
Barthas, F., Sellmeijer, J., Hugel, S., Waltisperger, E., Barrot, M., and Yalcin, I. (2015). The anterior cingulate cortex is a critical hub for pain-induced depression. Biol. Psychiatry 77: 236–245, https://doi.org/10.1016/j.biopsych.2014.08.004 .
doi: 10.1016/j.biopsych.2014.08.004
Benarroch, E.E. (2019). Insular cortex: functional complexity and clinical correlations. Neurology 93: 932–938, https://doi.org/10.1212/wnl.0000000000008525 .
doi: 10.1212/wnl.0000000000008525
Benison, A.M., Chumachenko, S., Harrison, J.A., Maier, S.F., Falci, S.P., Watkins, L.R., and Barth, D.S. (2011). Caudal granular insular cortex is sufficient and necessary for the long-term maintenance of allodynic behavior in the rat attributable to mononeuropathy. J. Neurosci. 31: 6317–6328, https://doi.org/10.1523/jneurosci.0076-11.2011 .
doi: 10.1523/jneurosci.0076-11.2011
Beukema, P., Cecil, K.L., Peterson, E., Mann, V.R., Matsushita, M., Takashima, Y., Navlakha, S., and Barth, A.L. (2018). TrpM8-mediated somatosensation in mouse neocortex. J. Comp. Neurol. 526: 1444–1456, https://doi.org/10.1002/cne.24418 .
doi: 10.1002/cne.24418
Bloodgood, D.W., Sugam, J.A., Holmes, A., and Kash, T.L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl. Psychiatry 8: 60, https://doi.org/10.1038/s41398-018-0106-x .
doi: 10.1038/s41398-018-0106-x
Bokiniec, P., Zampieri, N., Lewin, G.R., and Poulet, J.F. (2018). The neural circuits of thermal perception. Curr. Opin. Neurobiol. 52: 98–106, https://doi.org/10.1016/j.conb.2018.04.006 .
doi: 10.1016/j.conb.2018.04.006
Bourne, S., Machado, A.G., and Nagel, S.J. (2014). Basic anatomy and physiology of pain pathways. Neurosurg. Clin. N. Am. 25: 629–638, https://doi.org/10.1016/j.nec.2014.06.001 .
doi: 10.1016/j.nec.2014.06.001
Bushnell, M.C., Ceko, M., and Low, L.A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14: 502–511, https://doi.org/10.1038/nrn3516 .
doi: 10.1038/nrn3516
Bushnell, M.C., Duncan, G.H., Hofbauer, R.K., Ha, B., Chen, J.I., and Carrier, B. (1999). Pain perception: is there a role for primary somatosensory cortex? Proc. Natl. Acad. Sci. U. S. A. 96: 7705–7709, https://doi.org/10.1073/pnas.96.14.7705 .
doi: 10.1073/pnas.96.14.7705
Butler, R.K., Nilsson-Todd, L., Cleren, C., Léna, I., Garcia, R., and Finn, D.P. (2011). Molecular and electrophysiological changes in the prefrontal cortex-amygdala-dorsal periaqueductal grey pathway during persistent pain state and fear-conditioned analgesia. Physiol. Behav. 104: 1075–1081, https://doi.org/10.1016/j.physbeh.2011.05.028 .
doi: 10.1016/j.physbeh.2011.05.028
Cai, H., Haubensak, W., Anthony, T.E., and Anderson, D.J. (2014). Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 17: 1240–1248, https://doi.org/10.1038/nn.3767 .
doi: 10.1038/nn.3767
Cai, Y.Q., Wang, W., Paulucci-Holthauzen, A., and Pan, Z.Z. (2018). Brain circuits mediating opposing effects on emotion and pain. J. Neurosci. 38: 6340–6349, https://doi.org/10.1523/jneurosci.2780-17.2018 .
doi: 10.1523/jneurosci.2780-17.2018
Cardoso-Cruz, H., Paiva, P., Monteiro, C., and Galhardo, V. (2019). Selective optogenetic inhibition of medial prefrontal glutamatergic neurons reverses working memory deficits induced by neuropathic pain. Pain 160: 805–823, https://doi.org/10.1097/j.pain.0000000000001457 .
doi: 10.1097/j.pain.0000000000001457
Cardoso-Cruz, H., Sousa, M., Vieira, J.B., Lima, D., and Galhardo, V. (2013). Prefrontal cortex and mediodorsal thalamus reduced connectivity is associated with spatial working memory impairment in rats with inflammatory pain. Pain 154: 2397–2406, https://doi.org/10.1016/j.pain.2013.07.020 .
doi: 10.1016/j.pain.2013.07.020
Carlén, M. (2017). What constitutes the prefrontal cortex? Science 358: 478–482, https://doi.org/10.1126/science.aan8868 .
doi: 10.1126/science.aan8868
Cavalcanti, M.R.M., Passos, F.R.S., Monteiro, B.S., Gandhi, S.R., Heimfarth, L., Lima, B.S., Nascimento, Y.M., Duarte, M.C., Araujo, A.A.S., Menezes, I.R.A., et al.. (2021). HPLC-DAD-UV analysis, anti-inflammatory and anti-neuropathic effects of methanolic extract of Sideritis bilgeriana (lamiaceae) by NF-κB, TNF-α, IL-1β and IL-6 involvement. J. Ethnopharmacol. 265: 113338, https://doi.org/10.1016/j.jep.2020.113338 .
doi: 10.1016/j.jep.2020.113338
Chao, T.H., Chen, J.H., and Yen, C.T. (2018). Plasticity changes in forebrain activity and functional connectivity during neuropathic pain development in rats with sciatic spared nerve injury. Mol. Brain 11: 55, https://doi.org/10.1186/s13041-018-0398-z .
doi: 10.1186/s13041-018-0398-z
Chen, J.I., Ha, B., Bushnell, M.C., Pike, B., and Duncan, G.H. (2002). Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. J. Neurophysiol. 88: 464–474, https://doi.org/10.1152/jn.2002.88.1.464 .
doi: 10.1152/jn.2002.88.1.464
Chen, Q. and Heinricher, M.M. (2022). Shifting the balance: how top-down and bottom-up input modulate pain via the rostral ventromedial medulla. Front. Pain Res. (Lausanne) 3: 932476, https://doi.org/10.3389/fpain.2022.932476 .
doi: 10.3389/fpain.2022.932476
Chen, T., Taniguchi, W., Chen, Q.Y., Tozaki-Saitoh, H., Song, Q., Liu, R.H., Koga, K., Matsuda, T., Kaito-Sugimura, Y., Wang, J., et al.. (2018). Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex. Nat. Commun. 9: 1886, https://doi.org/10.1038/s41467-018-04309-2 .
doi: 10.1038/s41467-018-04309-2
Chen, Y.H., Wu, J.L., Hu, N.Y., Zhuang, J.P., Li, W.P., Zhang, S.R., Li, X.W., Yang, J.M., and Gao, T.M. (2021). Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J. Clin. Invest. 131: 2–4, https://doi.org/10.1172/jci145692 .
doi: 10.1172/jci145692
Chiang, M.C., Bowen, A., Schier, L.A., Tupone, D., Uddin, O., and Heinricher, M.M. (2019). Parabrachial complex: a hub for pain and aversion. J. Neurosci. 39: 8225–8230, https://doi.org/10.1523/jneurosci.1162-19.2019 .
doi: 10.1523/jneurosci.1162-19.2019
Chiang, M.C., Nguyen, E.K., Canto-Bustos, M., Papale, A.E., Oswald, A.M., and Ross, S.E. (2020). Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response. Neuron 106: 927–939, https://doi.org/10.1016/j.neuron.2020.03.014 .
doi: 10.1016/j.neuron.2020.03.014
Ching, Y.Y., Wang, C., Tay, T., Loke, Y.M., Tang, P.H., Sng, B.L., and Zhou, J. (2018). Altered sensory insular connectivity in chronic postsurgical pain patients. Front. Hum. Neurosci. 12: 483, https://doi.org/10.3389/fnhum.2018.00483 .
doi: 10.3389/fnhum.2018.00483
Coghill, R.C., Sang, C.N., Maisog, J.M., and Iadarola, M.J. (1999). Pain intensity processing within the human brain: a bilateral, distributed mechanism. J. Neurophysiol. 82: 1934–1943, https://doi.org/10.1152/jn.1999.82.4.1934 .
doi: 10.1152/jn.1999.82.4.1934
Cohen, S.P. and Mao, J. (2014). Neuropathic pain: mechanisms and their clinical implications. Brit. Med. J. 348: f7656, https://doi.org/10.1136/bmj.f7656 .
doi: 10.1136/bmj.f7656
Cohen, S.P., Vase, L., and Hooten, W.M. (2021). Chronic pain: an update on burden, best practices, and new advances. Lancet 397: 2082–2097, https://doi.org/10.1016/s0140-6736(21)00393-7 .
doi: 10.1016/s0140-6736(21)00393-7
Cottam, W.J., Iwabuchi, S.J., Drabek, M.M., Reckziegel, D., and Auer, D.P. (2018). Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis. Pain 159: 929–938, https://doi.org/10.1097/j.pain.0000000000001209 .
doi: 10.1097/j.pain.0000000000001209
Craig, A.D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3: 655–666, https://doi.org/10.1038/nrn894 .
doi: 10.1038/nrn894
Craig, A.D. (2003). Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13: 500–505, https://doi.org/10.1016/s0959-4388(03)00090-4 .
doi: 10.1016/s0959-4388(03)00090-4
Craig, A.D. (2014). Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. J. Comp. Neurol. 522: 36–63, https://doi.org/10.1002/cne.23425 .
doi: 10.1002/cne.23425
Dale, J., Zhou, H., Zhang, Q., Martinez, E., Hu, S., Liu, K., Urien, L., Chen, Z., and Wang, J. (2018). Scaling up cortical control inhibits pain. Cell Rep. 23: 1301–1313, https://doi.org/10.1016/j.celrep.2018.03.139 .
doi: 10.1016/j.celrep.2018.03.139
David-Pereira, A., Puga, S., Gonçalves, S., Amorim, D., Silva, C., Pertovaara, A., Almeida, A., and Pinto-Ribeiro, F. (2016). Metabotropic glutamate 5 receptor in the infralimbic cortex contributes to descending pain facilitation in healthy and arthritic animals. Neuroscience 312: 108–119, https://doi.org/10.1016/j.neuroscience.2015.10.060 .
doi: 10.1016/j.neuroscience.2015.10.060
David-Pereira, A., Sagalajev, B., Wei, H., Almeida, A., Pertovaara, A., and Pinto-Ribeiro, F. (2017). The medullary dorsal reticular nucleus as a relay for descending pronociception induced by the mGluR5 in the rat infralimbic cortex. Neuroscience 349: 341–354, https://doi.org/10.1016/j.neuroscience.2017.02.046 .
doi: 10.1016/j.neuroscience.2017.02.046
De Ridder, D., Adhia, D., and Vanneste, S. (2021). The anatomy of pain and suffering in the brain and its clinical implications. Neurosci. Biobehav. Rev. 130: 125–146, https://doi.org/10.1016/j.neubiorev.2021.08.013 .
doi: 10.1016/j.neubiorev.2021.08.013
De Ridder, D. and Vanneste, S. (2017). Occipital nerve field transcranial direct current stimulation normalizes imbalance between pain detecting and pain inhibitory pathways in fibromyalgia. Neurotherapeutics 14: 484–501, https://doi.org/10.1007/s13311-016-0493-8 .
doi: 10.1007/s13311-016-0493-8
Devoize, L., Alvarez, P., Monconduit, L., and Dallel, R. (2011). Representation of dynamic mechanical allodynia in the ventral medial prefrontal cortex of trigeminal neuropathic rats. Eur. J. Pain 15: 676–682, https://doi.org/10.1016/j.ejpain.2010.11.017 .
doi: 10.1016/j.ejpain.2010.11.017
Donaldson, L.F. and Lumb, B.M. (2017). Top-down control of pain. J. Physiol. 595: 4139–4140, https://doi.org/10.1113/jp273361 .
doi: 10.1113/jp273361
Drake, R.A., Steel, K.A., Apps, R., Lumb, B.M., and Pickering, A.E. (2021). Loss of cortical control over the descending pain modulatory system determines the development of the neuropathic pain state in rats. Elife 10: 4–7, https://doi.org/10.7554/elife.65156 .
doi: 10.7554/elife.65156
Dum, R.P., Levinthal, D.J., and Strick, P.L. (2009). The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J. Neurosci. 29: 14223–14235, https://doi.org/10.1523/jneurosci.3398-09.2009 .
doi: 10.1523/jneurosci.3398-09.2009
Eippert, F., Bingel, U., Schoell, E.D., Yacubian, J., Klinger, R., Lorenz, J., and Büchel, C. (2009). Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63: 533–543, https://doi.org/10.1016/j.neuron.2009.07.014 .
doi: 10.1016/j.neuron.2009.07.014
Eto, K., Ishibashi, H., Yoshimura, T., Watanabe, M., Miyamoto, A., Ikenaka, K., Moorhouse, A.J., and Nabekura, J. (2012). Enhanced GABAergic activity in the mouse primary somatosensory cortex is insufficient to alleviate chronic pain behavior with reduced expression of neuronal potassium-chloride cotransporter. J. Neurosci. 32: 16552–16559, https://doi.org/10.1523/jneurosci.2104-12.2012 .
doi: 10.1523/jneurosci.2104-12.2012
Fields, H. (2004). State-dependent opioid control of pain. Nat. Rev. Neurosci. 5: 565–575, https://doi.org/10.1038/nrn1431 .
doi: 10.1038/nrn1431
Fields, H.L. (2000). Pain modulation: expectation, opioid analgesia and virtual pain. Prog. Brain Res. 122: 245–253, https://doi.org/10.1016/s0079-6123(08)62143-3 .
doi: 10.1016/s0079-6123(08)62143-3
François, A., Low, S.A., Sypek, E.I., Christensen, A.J., Sotoudeh, C., Beier, K.T., Ramakrishnan, C., Ritola, K.D., Sharif-Naeini, R., Deisseroth, K., et al.. (2017). A Brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and enkephalins. Neuron 93: 822–839, https://doi.org/10.1016/j.neuron.2017.01.008 .
doi: 10.1016/j.neuron.2017.01.008
Friebel, U., Eickhoff, S.B., and Lotze, M. (2011). Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. Neuroimage 58: 1070–1080, https://doi.org/10.1016/j.neuroimage.2011.07.022 .
doi: 10.1016/j.neuroimage.2011.07.022
Frøkjær, J.B., Olesen, S.S., Graversen, C., Andresen, T., Lelic, D., and Drewes, A.M. (2018). Neuroimaging of the human visceral pain system-a methodological review. Scand. J. Pain 2: 95–104, https://doi.org/10.1016/j.sjpain.2011.02.006 .
doi: 10.1016/j.sjpain.2011.02.006
Frot, M., Mauguière, F., Magnin, M., and Garcia-Larrea, L. (2008). Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J. Neurosci. 28: 944–952, https://doi.org/10.1523/jneurosci.2934-07.2008 .
doi: 10.1523/jneurosci.2934-07.2008
Fuchs, P.N., Peng, Y.B., Boyette-Davis, J.A., and Uhelski, M.L. (2014). The anterior cingulate cortex and pain processing. Front. Integr. Neurosci. 8: 35, https://doi.org/10.3389/fnint.2014.00035 .
doi: 10.3389/fnint.2014.00035
Galhardoni, R., Aparecida da Silva, V., García-Larrea, L., Dale, C., Baptista, A.F., Barbosa, L.M., Menezes, L.M.B., de Siqueira, Srdt, Valério, F. , Rosi, J.Jr., et al.. (2019). Insular and anterior cingulate cortex deep stimulation for central neuropathic pain: disassembling the percept of pain. Neurology 92: e2165–e75, https://doi.org/10.1212/wnl.0000000000007396 .
doi: 10.1212/wnl.0000000000007396
Gao, S.H., Wen, H.Z., Shen, L.L., Zhao, Y.D., and Ruan, H.Z. (2016). Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels. Neuropharmacology 105: 361–377, https://doi.org/10.1016/j.neuropharm.2016.01.036 .
doi: 10.1016/j.neuropharm.2016.01.036
Garro-Martínez, E., Fullana, M.N., Florensa-Zanuy, E., Senserrich, J., Paz, V., Ruiz-Bronchal, E., Adell, A., Castro, E., Díaz, Á., Pazos, Á, et al. (2021). mTOR knockdown in the infralimbic cortex evokes a depressive-like state in mouse. Int. J. Mol. Sci. 22: 1–5, https://doi.org/10.3390/ijms22168671 .
doi: 10.3390/ijms22168671
Ge, J., Cai, Y., and Pan, Z.Z. (2022). Synaptic plasticity in two cell types of central amygdala for regulation of emotion and pain. Front. Cell Neurosci. 16: 997360, https://doi.org/10.3389/fncel.2022.997360 .
doi: 10.3389/fncel.2022.997360
Giesecke, T., Gracely, R.H., Grant, M.A., Nachemson, A., Petzke, F., Williams, D.A., and Clauw, D.J. (2004). Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50: 613–623, https://doi.org/10.1002/art.20063 .
doi: 10.1002/art.20063
Goadsby, P.J., Holland, P.R., Martins-Oliveira, M., Hoffmann, J., Schankin, C., and Akerman, S. (2017). Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 97: 553–622, https://doi.org/10.1152/physrev.00034.2015 .
doi: 10.1152/physrev.00034.2015
Griessner, J., Pasieka, M., Böhm, V., Grössl, F., Kaczanowska, J., Pliota, P., Kargl, D., Werner, B., Kaouane, N., Strobelt, S., et al.. (2021). Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect. Mol. Psychiatry 26: 534–544, https://doi.org/10.1038/s41380-018-0310-3 .
doi: 10.1038/s41380-018-0310-3
Gustin, S.M., Wrigley, P.J., Youssef, A.M., McIndoe, L., Wilcox, S.L., Rae, C.D., Edden, R.A.E., Siddall, P.J., and Henderson, L.A. (2014). Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain 155: 1027–1036, https://doi.org/10.1016/j.pain.2014.02.008 .
doi: 10.1016/j.pain.2014.02.008
Han, J., Cha, M., Kwon, M., Hong, S.K., Bai, S.J., and Lee, B.H. (2016). In vivo voltage-sensitive dye imaging of the insular cortex in nerve-injured rats. Neurosci. Lett. 634: 146–152, https://doi.org/10.1016/j.neulet.2016.10.015 .
doi: 10.1016/j.neulet.2016.10.015
Hao, S., Yang, H., Wang, X., He, Y., Xu, H., Wu, X., Pan, L., Liu, Y., Lou, H., Xu, H., et al.. (2019). The lateral hypothalamic and BNST GABAergic projections to the anterior ventrolateral periaqueductal gray regulate feeding. Cell Rep. 28: 616–624, https://doi.org/10.1016/j.celrep.2019.06.051 .
doi: 10.1016/j.celrep.2019.06.051
Hashmi, J.A., Baliki, M.N., Huang, L., Baria, A.T., Torbey, S., Hermann, K.M., Schnitzer, T.J., and Apkarian, A.V. (2013). Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136: 2751–2768, https://doi.org/10.1093/brain/awt211 .
doi: 10.1093/brain/awt211
Heinricher, M.M., Morgan, M.M., Tortorici, V., and Fields, H.L. (1994). Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience 63: 279–288, https://doi.org/10.1016/0306-4522(94)90022-1 .
doi: 10.1016/0306-4522(94)90022-1
Heinricher, M.M., Tavares, I., Leith, J.L., and Lumb, B.M. (2009). Descending control of nociception: specificity, recruitment and plasticity. Brain Res. Rev. 60: 214–225, https://doi.org/10.1016/j.brainresrev.2008.12.009 .
doi: 10.1016/j.brainresrev.2008.12.009
Hogri, R., Teuchmann, H.L., Heinke, B., Holzinger, R., Trofimova, L., and Sandkühler, J. (2022). GABAergic CaMKIIα+ amygdala output attenuates pain and modulates emotional-motivational behavior via parabrachial inhibition. J. Neurosci. 42: 5373–5388, https://doi.org/10.1523/jneurosci.2067-21.2022 .
doi: 10.1523/jneurosci.2067-21.2022
Hon, O.J., DiBerto, J.F., Mazzone, C.M., Sugam, J., Bloodgood, D.W., Hardaway, J.A., Husain, M., Kendra, A., McCall, N.M., Lopez, A.J., et al.. (2022). Serotonin modulates an inhibitory input to the central amygdala from the ventral periaqueductal gray. Neuropsychopharmacology 47: 2194–2204, https://doi.org/10.1038/s41386-022-01392-4 .
doi: 10.1038/s41386-022-01392-4
Hsieh, P.C., Tseng, M.T., Chao, C.C., Lin, Y.H., Tseng, W.I., Liu, K.H., Chiang, M.C., and Hsieh, S.T. (2015). Imaging signatures of altered brain responses in small-fiber neuropathy: reduced functional connectivity of the limbic system after peripheral nerve degeneration. Pain 156: 904–916, https://doi.org/10.1097/j.pain.0000000000000128 .
doi: 10.1097/j.pain.0000000000000128
Huang, D., Grady, F.S., Peltekian, L., Laing, J.J., and Geerling, J.C. (2021). Efferent projections of CGRP/Calca-expressing parabrachial neurons in mice. J. Comp. Neurol. 529: 2911–2957, https://doi.org/10.1002/cne.25136 .
doi: 10.1002/cne.25136
Huang, J., Gadotti, V.M., Chen, L., Souza, I.A., Huang, S., Wang, D., Ramakrishnan, C., Deisseroth, K., Zhang, Z., and Zamponi, G.W. (2019). A neuronal circuit for activating descending modulation of neuropathic pain. Nat. Neurosci. 22: 1659–1668, https://doi.org/10.1038/s41593-019-0481-5 .
doi: 10.1038/s41593-019-0481-5
Hwang, K., Bertolero, M.A., Liu, W.B., and D’Esposito, M. (2017). The Human thalamus is an integrative hub for functional brain networks. J. Neurosci. 37: 5594–5607, https://doi.org/10.1523/jneurosci.0067-17.2017 .
doi: 10.1523/jneurosci.0067-17.2017
Inami, C., Tanihira, H., Kikuta, S., Ogasawara, O., Sobue, K., Kume, K., Osanai, M., and Ohsawa, M. (2019). Visualization of brain activity in a neuropathic pain model using quantitative activity-dependent manganese magnetic resonance imaging. Front. Neural. Circuits 13: 74, https://doi.org/10.3389/fncir.2019.00074 .
doi: 10.3389/fncir.2019.00074
Jarrin, S., Pandit, A., Roche, M., and Finn, D.P. (2020). Differential role of anterior cingulate cortical glutamatergic neurons in pain-related aversion learning and nociceptive behaviors in male and female rats. Front. Behav. Neurosci. 14: 139, https://doi.org/10.3389/fnbeh.2020.00139 .
doi: 10.3389/fnbeh.2020.00139
Jhang, J., Lee, H., Kang, M.S., Lee, H.S., Park, H., and Han, J.H. (2018). Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nat. Commun. 9: 2744, https://doi.org/10.1038/s41467-018-05090-y .
doi: 10.1038/s41467-018-05090-y
Ji, G., Sun, H., Fu, Y., Li, Z., Pais-Vieira, M., Galhardo, V., and Neugebauer, V. (2010). Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J. Neurosci. 30: 5451–5464, https://doi.org/10.1523/jneurosci.0225-10.2010 .
doi: 10.1523/jneurosci.0225-10.2010
Jiang, Z.C., Pan, Q., Zheng, C., Deng, X.F., Wang, J.Y., and Luo, F. (2014). Inactivation of the prelimbic rather than infralimbic cortex impairs acquisition and expression of formalin-induced conditioned place avoidance. Neurosci. Lett. 569: 89–93, https://doi.org/10.1016/j.neulet.2014.03.074 .
doi: 10.1016/j.neulet.2014.03.074
Johansen, J.P. and Fields, H.L. (2004). Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7: 398–403, https://doi.org/10.1038/nn1207 .
doi: 10.1038/nn1207
Jones, A.F. and Sheets, P.L. (2020). Sex-specific disruption of distinct mPFC inhibitory neurons in spared-nerve injury model of neuropathic pain. Cell Rep. 31: 107729, https://doi.org/10.1016/j.celrep.2020.107729 .
doi: 10.1016/j.celrep.2020.107729
Joo, S.Y., Park, C.H., Cho, Y.S., Seo, C.H., and Ohn, S.H. (2021). Plastic changes in pain and motor network induced by chronic burn pain. J. Clin. Med. 10: 6–8, https://doi.org/10.3390/jcm10122592 .
doi: 10.3390/jcm10122592
Juarez-Salinas, D.L., Braz, J.M., Etlin, A., Gee, S., Sohal, V., and Basbaum, A.I. (2019). GABAergic cell transplants in the anterior cingulate cortex reduce neuropathic pain aversiveness. Brain 142: 2655–2669, https://doi.org/10.1093/brain/awz203 .
doi: 10.1093/brain/awz203
Kato, F., Sugimura, Y.K., and Takahashi, Y. (2018). Pain-associated neural plasticity in the parabrachial to central amygdala circuit : pain changes the brain, and the brain changes the pain. Adv. Exp. Med. Biol. 1099: 157–166, https://doi.org/10.1007/978-981-13-1756-9_14 .
doi: 10.1007/978-981-13-1756-9_14
Kelly, C.J., Huang, M., Meltzer, H., and Martina, M. (2016). Reduced glutamatergic currents and dendritic branching of layer 5 pyramidal cells contribute to medial prefrontal cortex deactivation in a rat model of neuropathic pain. Front. Cell Neurosci. 10: 133, https://doi.org/10.3389/fncel.2016.00133 .
doi: 10.3389/fncel.2016.00133
Kelly, C.J. and Martina, M. (2018). Circuit-selective properties of glutamatergic inputs to the rat prelimbic cortex and their alterations in neuropathic pain. Brain Struct. Funct. 223: 2627–2639, https://doi.org/10.1007/s00429-018-1648-7 .
doi: 10.1007/s00429-018-1648-7
Kikkert, S., Mezue, M., O’Shea, J., Henderson Slater, D., Johansen-Berg, H., Tracey, I., and Makin, T.R. (2019). Neural basis of induced phantom limb pain relief. Ann. Neurol. 85: 59–73, https://doi.org/10.1002/ana.25371 .
doi: 10.1002/ana.25371
Kim, J., Pignatelli, M., Xu, S., Itohara, S., and Tonegawa, S. (2016). Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19: 1636–1646, https://doi.org/10.1038/nn.4414 .
doi: 10.1038/nn.4414
Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S.A., and Tonegawa, S. (2017). Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93: 1464–1479, https://doi.org/10.1016/j.neuron.2017.02.034 .
doi: 10.1016/j.neuron.2017.02.034
Kim, S.K., Hayashi, H., Ishikawa, T., Shibata, K., Shigetomi, E., Shinozaki, Y., Inada, H., Roh, S.E., Kim, S.J., Lee, G., et al.. (2016). Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J. Clin. Invest. 126: 1983–1997, https://doi.org/10.1172/jci82859 .
doi: 10.1172/jci82859
Kim, W., Kim, S.K., and Nabekura, J. (2017). Functional and structural plasticity in the primary somatosensory cortex associated with chronic pain. J. Neurochem. 141: 499–506, https://doi.org/10.1111/jnc.14012 .
doi: 10.1111/jnc.14012
Kiritoshi, T., Ji, G., and Neugebauer, V. (2016). Rescue of impaired mGluR5-driven endocannabinoid signaling restores prefrontal cortical output to inhibit pain in arthritic rats. J. Neurosci. 36: 837–850, https://doi.org/10.1523/jneurosci.4047-15.2016 .
doi: 10.1523/jneurosci.4047-15.2016
Koga, K., Descalzi, G., Chen, T., Ko, H.G., Lu, J., Li, S., Son, J., Kim, T., Kwak, C., Huganir, R.L., et al.. (2015). Coexistence of two forms of LTP in ACC provides a synaptic mechanism for the interactions between anxiety and chronic pain. Neuron 85: 377–389, https://doi.org/10.1016/j.neuron.2015.05.016 .
doi: 10.1016/j.neuron.2015.05.016
Kong, Q.M., Qiao, H., Liu, C.Z., Zhang, P., Li, K., Wang, L., Li, J.T., Su, Y., Li, K.Q., Yan, C.G., et al.. (2018). Aberrant intrinsic functional connectivity in thalamo-cortical networks in major depressive disorder. CNS Neurosci. Ther. 24: 1063–1072, https://doi.org/10.1111/cns.12831 .
doi: 10.1111/cns.12831
Koutsikou, S., Watson, T.C., Crook, J.J., Leith, J.L., Lawrenson, C.L., Apps, R., and Lumb, B.M. (2015). The periaqueductal gray orchestrates sensory and motor circuits at multiple levels of the neuraxis. J. Neurosci. 35: 14132–14147, https://doi.org/10.1523/jneurosci.0261-15.2015 .
doi: 10.1523/jneurosci.0261-15.2015
Krout, K.E., Jansen, A.S., and Loewy, A.D. (1998). Periaqueductal gray matter projection to the parabrachial nucleus in rat. J. Comp. Neurol. 401: 437–454, https://doi.org/10.1002/(sici)1096-9861(19981130)401:4<437::aid-cne2>3.0.co;2-5 .
Kuner, R. and Kuner, T. (2021). Cellular circuits in the brain and their modulation in acute and chronic pain. Physiol. Rev. 101: 213–258, https://doi.org/10.1152/physrev.00040.2019 .
doi: 10.1152/physrev.00040.2019
Kwon, M., Altin, M., Duenas, H., and Alev, L. (2014). The role of descending inhibitory pathways on chronic pain modulation and clinical implications. Pain Pract. 14: 656–667, https://doi.org/10.1111/papr.12145 .
doi: 10.1111/papr.12145
Lanius, R.A., Boyd, J.E., McKinnon, M.C., Nicholson, A.A., Frewen, P., Vermetten, E., Jetly, R., and Spiegel, D. (2018). A review of the neurobiological basis of trauma-related dissociation and its relation to cannabinoid- and opioid-mediated stress response: a transdiagnostic, translational approach. Curr. Psychiatry Rep. 20: 118, https://doi.org/10.1007/s11920-018-0983-y .
doi: 10.1007/s11920-018-0983-y
Lau, B.K. and Vaughan, C.W. (2014). Descending modulation of pain: the GABA disinhibition hypothesis of analgesia. Curr. Opin. Neurobiol. 29: 159–164, https://doi.org/10.1016/j.conb.2014.07.010 .
doi: 10.1016/j.conb.2014.07.010
Laubach, M., Amarante, L.M., Swanson, K., and White, S.R. (2018). What, if anything, is rodent prefrontal cortex? eNeuro 5: 5–6, https://doi.org/10.1523/eneuro.0315-18.2018 .
doi: 10.1523/eneuro.0315-18.2018
LeDoux, J. (2007). The amygdala. Curr. Biol. 17: R868–R874, https://doi.org/10.1016/j.cub.2007.08.005 .
doi: 10.1016/j.cub.2007.08.005
Lee, J.Y., You, T., Lee, C.H., Im, G.H., Seo, H., Woo, C.W., and Kim, S.G. (2022). Role of anterior cingulate cortex inputs to periaqueductal gray for pain avoidance. Curr. Biol. 32: 2834–2847, https://doi.org/10.1016/j.cub.2022.04.090 .
doi: 10.1016/j.cub.2022.04.090
Lenz, F.A., Weiss, N., Ohara, S., Lawson, C., and Greenspan, J.D. (2004). The role of the thalamus in pain. Suppl. Clin. Neurophysiol. 57: 50–61, https://doi.org/10.1016/s1567-424x(09)70342-3 .
doi: 10.1016/s1567-424x(09)70342-3
Li, X.Y., Ko, H.G., Chen, T., Descalzi, G., Koga, K., Wang, H., Kim, S.S., Shang, Y., Kwak, C., Park, S.W., et al.. (2010). Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 330: 1400–1404, https://doi.org/10.1126/science.1191792 .
doi: 10.1126/science.1191792
Liang, S.H., Zhao, W.J., Yin, J.B., Chen, Y.B., Li, J.N., Feng, B., Lu, Y.C., Wang, J., Dong, Y.L., and Li, Y.Q. (2020). A neural circuit from thalamic paraventricular nucleus to central amygdala for the facilitation of neuropathic pain. J. Neurosci. 40: 7837–7854, https://doi.org/10.1523/jneurosci.2487-19.2020 .
doi: 10.1523/jneurosci.2487-19.2020
Llinás, R.R., Ribary, U., Jeanmonod, D., Kronberg, E., and Mitra, P.P. (1999). Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. U. S. A. 96: 15222–15227, https://doi.org/10.1073/pnas.96.26.15222 .
doi: 10.1073/pnas.96.26.15222
Loeser, J.D. and Melzack, R. (1999). Pain: an overview. Lancet 353: 1607–1609, https://doi.org/10.1016/s0140-6736(99)01311-2 .
doi: 10.1016/s0140-6736(99)01311-2
Lu, C., Yang, T., Zhao, H., Zhang, M., Meng, F., Fu, H., Xie, Y., and Xu, H. (2016). Insular cortex is critical for the perception, modulation, and chronification of pain. Neurosci. Bull. 32: 191–201, https://doi.org/10.1007/s12264-016-0016-y .
doi: 10.1007/s12264-016-0016-y
Luongo, L., de Novellis, V., Gatta, L., Palazzo, E., Vita, D., Guida, F., Giordano, C., Siniscalco, D., Marabese, I., De Chiaro, M., et al.. (2013). Role of metabotropic glutamate receptor 1 in the basolateral amygdala-driven prefrontal cortical deactivation in inflammatory pain in the rat. Neuropharmacology 66: 317–329, https://doi.org/10.1016/j.neuropharm.2012.05.047 .
doi: 10.1016/j.neuropharm.2012.05.047
Maihöfner, C. and Handwerker, H.O. (2005). Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28: 996–1006, https://doi.org/10.1016/j.neuroimage.2005.06.049 .
doi: 10.1016/j.neuroimage.2005.06.049
Mao, C.P., Yang, H.J., Yang, Q.X., Sun, H.H., Zhang, G.R., and Zhang, Q.J. (2022). Altered amygdala-prefrontal connectivity in chronic nonspecific low back pain: resting-state fMRI and dynamic causal modelling study. Neuroscience 482: 18–29, https://doi.org/10.1016/j.neuroscience.2021.12.003 .
doi: 10.1016/j.neuroscience.2021.12.003
Marek, R., Xu, L., Sullivan, R.K.P., and Sah, P. (2018). Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat. Neurosci. 21: 654–658, https://doi.org/10.1038/s41593-018-0137-x .
doi: 10.1038/s41593-018-0137-x
Martenson, M.E., Cetas, J.S., and Heinricher, M.M. (2009). A possible neural basis for stress-induced hyperalgesia. Pain 142: 236–244, https://doi.org/10.1016/j.pain.2009.01.011 .
doi: 10.1016/j.pain.2009.01.011
Matsumoto, N., Bester, H., Menendez, L., Besson, J.M., and Bernard, J.F. (1996). Changes in the responsiveness of parabrachial neurons in the arthritic rat: an electrophysiological study. J. Neurophysiol. 76: 4113–4126, https://doi.org/10.1152/jn.1996.76.6.4113 .
doi: 10.1152/jn.1996.76.6.4113
May, A. (2008). Chronic pain may change the structure of the brain. Pain 137: 7–15, https://doi.org/10.1016/j.pain.2008.02.034 .
doi: 10.1016/j.pain.2008.02.034
May, A. (2011). Structural brain imaging: a window into chronic pain. Neuroscientist 17: 209–220, https://doi.org/10.1177/1073858410396220 .
doi: 10.1177/1073858410396220
Mazzitelli, M., Marshall, K., Pham, A., Ji, G., and Neugebauer, V. (2021). Optogenetic manipulations of amygdala neurons modulate spinal nociceptive processing and behavior under normal conditions and in an arthritis pain model. Front. Pharmacol. 12: 668337, https://doi.org/10.3389/fphar.2021.668337 .
doi: 10.3389/fphar.2021.668337
Mazzitelli, M., Yakhnitsa, V., Neugebauer, B., and Neugebauer, V. (2022). Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats. Neuropharmacology 210: 109031, https://doi.org/10.1016/j.neuropharm.2022.109031 .
doi: 10.1016/j.neuropharm.2022.109031
Mazzola, L., Isnard, J., Peyron, R., Guénot, M., and Mauguière, F. (2009). Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 146: 99–104, https://doi.org/10.1016/j.pain.2009.07.014 .
doi: 10.1016/j.pain.2009.07.014
McPherson, K.B. and Ingram, S.L. (2022). Cellular and circuit diversity determines the impact of endogenous opioids in the descending pain modulatory pathway. Front. Syst. Neurosci. 16: 963812, https://doi.org/10.3389/fnsys.2022.963812 .
doi: 10.3389/fnsys.2022.963812
Meda, K.S., Patel, T., Braz, J.M., Malik, R., Turner, M.L., Seifikar, H., Basbaum, A.I., and Sohal, V.S. (2019). Microcircuit mechanisms through which mediodorsal thalamic input to anterior cingulate cortex exacerbates pain-related aversion. Neuron 102: 944–959, https://doi.org/10.1016/j.neuron.2019.03.042 .
doi: 10.1016/j.neuron.2019.03.042
Melzack, R. (1999). From the gate to the neuromatrix. Pain (Suppl. 6) 3: S121–S26, https://doi.org/10.1016/s0304-3959(99)00145-1 .
doi: 10.1016/s0304-3959(99)00145-1
Melzack, R. (2001). Pain and the neuromatrix in the brain. J Dent Educ 65: 1378–1382, https://doi.org/10.1002/j.0022-0337.2001.65.12.tb03497.x .
doi: 10.1002/j.0022-0337.2001.65.12.tb03497.x
Meng, X., Yue, L., Liu, A., Tao, W., Shi, L., Zhao, W., Wu, Z., Zhang, Z., Wang, L., Zhang, X., et al.. (2022). Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. J. Biol. Chem. 298: 102207, https://doi.org/10.1016/j.jbc.2022.102207 .
doi: 10.1016/j.jbc.2022.102207
Millan, M.J. (2002). Descending control of pain. Prog. Neurobiol. 66: 355–474, https://doi.org/10.1016/s0301-0082(02)00009-6 .
doi: 10.1016/s0301-0082(02)00009-6
Miller Neilan, R., Majetic, G., Gil-Silva, M., Adke, A.P., Carrasquillo, Y., and Kolber, B.J. (2021). Agent-based modeling of the central amygdala and pain using cell-type specific physiological parameters. PLoS Comput. Biol. 17: e1009097, https://doi.org/10.1371/journal.pcbi.1009097 .
doi: 10.1371/journal.pcbi.1009097
Monroe, T.B., Fillingim, R.B., Bruehl, S.P., Rogers, B.P., Dietrich, M.S., Gore, J.C., Atalla, S.W., and Cowan, R.L. (2018). Sex differences in brain regions modulating pain among older adults: a cross-sectional resting state functional connectivity study. Pain Med. 19: 1737–1747, https://doi.org/10.1093/pm/pnx084 .
doi: 10.1093/pm/pnx084
Morgan, M.M. and Fields, H.L. (1994). Pronounced changes in the activity of nociceptive modulatory neurons in the rostral ventromedial medulla in response to prolonged thermal noxious stimuli. J. Neurophysiol. 72: 1161–1170, https://doi.org/10.1152/jn.1994.72.3.1161 .
doi: 10.1152/jn.1994.72.3.1161
Morton, D.L., Sandhu, J.S., and Jones, A.K. (2016). Brain imaging of pain: state of the art. J. Pain Res. 9: 613–624, https://doi.org/10.2147/jpr.s60433 .
doi: 10.2147/jpr.s60433
Mukherjee, A. and Caroni, P. (2019). Author correction: infralimbic cortex is required for learning alternatives to prelimbic promoted associations through reciprocal connectivity. Nat. Commun. 10: 3082, https://doi.org/10.1038/s41467-019-11205-w .
doi: 10.1038/s41467-019-11205-w
Nagasaka, K., Takashima, I., Matsuda, K., and Higo, N. (2017). Late-onset hypersensitivity after a lesion in the ventral posterolateral nucleus of the thalamus: a macaque model of central post-stroke pain. Sci. Rep. 7: 10316, https://doi.org/10.1038/s41598-017-10679-2 .
doi: 10.1038/s41598-017-10679-2
Nardone, R., Höller, Y., Sebastianelli, L., Versace, V., Saltuari, L., Brigo, F., Lochner, P., and Trinka, E. (2018). Cortical morphometric changes after spinal cord injury. Brain Res. Bull. 137: 107–119, https://doi.org/10.1016/j.brainresbull.2017.11.013 .
doi: 10.1016/j.brainresbull.2017.11.013
Neubert, M.J., Kincaid, W., and Heinricher, M.M. (2004). Nociceptive facilitating neurons in the rostral ventromedial medulla. Pain 110: 158–165, https://doi.org/10.1016/j.pain.2004.03.017 .
doi: 10.1016/j.pain.2004.03.017
Neugebauer, V. (2020). Amygdala physiology in pain. Handb. Behav. Neurosci. 26: 101–113, https://doi.org/10.1016/b978-0-12-815134-1.00004-0 .
doi: 10.1016/b978-0-12-815134-1.00004-0
Neugebauer, V., Li, W., Bird, G.C., and Han, J.S. (2004). The amygdala and persistent pain. Neuroscientist 10: 221–234, https://doi.org/10.1177/1073858403261077 .
doi: 10.1177/1073858403261077
Neugebauer, V., Mazzitelli, M., Cragg, B., Ji, G., Navratilova, E., and Porreca, F. (2020). Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 170: 108052, https://doi.org/10.1016/j.neuropharm.2020.108052 .
doi: 10.1016/j.neuropharm.2020.108052
Neumann, L., Wulms, N., Witte, V., Spisak, T., Zunhammer, M., Bingel, U., and Schmidt-Wilcke, T. (2021). Network properties and regional brain morphology of the insular cortex correlate with individual pain thresholds. Hum. Brain Mapp. 42: 4896–4908, https://doi.org/10.1002/hbm.25588 .
doi: 10.1002/hbm.25588
Nguyen, E., Smith, K.M., Cramer, N., Holland, R.A., Bleimeister, I.H., Flores-Felix, K., Silberberg, H., Keller, A., Le Pichon, C.E., and Ross, S.E. (2022). Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain 145: 2586–2601, https://doi.org/10.1093/brain/awac189 .
doi: 10.1093/brain/awac189
Okada, T., Kato, D., Nomura, Y., Obata, N., Quan, X., Morinaga, A., Yano, H., Guo, Z., Aoyama, Y., Tachibana, Y., et al. (2021). Pain induces stable, active microcircuits in the somatosensory cortex that provide a therapeutic target. Sci. Adv. 7: 6–8, https://doi.org/10.1126/sciadv.abd8261 .
doi: 10.1126/sciadv.abd8261
Osborne, N.R., Cheng, J.C., Rogachov, A., Kim, J.A., Hemington, K.S., Bosma, R.L., Inman, R.D., and Davis, K.D. (2021). Abnormal subgenual anterior cingulate circuitry is unique to women but not men with chronic pain. Pain 162: 97–108, https://doi.org/10.1097/j.pain.0000000000002016 .
doi: 10.1097/j.pain.0000000000002016
Ossipov, M.H., Dussor, G.O., and Porreca, F. (2010). Central modulation of pain. J. Clin. Invest. 120: 3779–3787, https://doi.org/10.1172/jci43766 .
doi: 10.1172/jci43766
Ossipov, M.H., Morimura, K., and Porreca, F. (2014). Descending pain modulation and chronification of pain. Curr. Opin. Support Palliat. Care 8: 143–151, https://doi.org/10.1097/spc.0000000000000055 .
doi: 10.1097/spc.0000000000000055
Ostrowsky, K., Magnin, M., Ryvlin, P., Isnard, J., Guenot, M., and Mauguière, F. (2002). Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb. Cortex 12: 376–385, https://doi.org/10.1093/cercor/12.4.376 .
doi: 10.1093/cercor/12.4.376
Otsu, Y. and Aubrey, K.R. (2022). Kappa opioids inhibit the GABA/glycine terminals of rostral ventromedial medulla projections in the superficial dorsal horn of the spinal cord. J. Physiol. 600: 4187–4205, https://doi.org/10.1113/jp283021 .
doi: 10.1113/jp283021
Pare, D. and Duvarci, S. (2012). Amygdala microcircuits mediating fear expression and extinction. Curr. Opin. Neurobiol. 22: 717–723, https://doi.org/10.1016/j.conb.2012.02.014 .
doi: 10.1016/j.conb.2012.02.014
Pauli, J.L., Chen, J.Y., Basiri, M.L., Park, S., Carter, M.E., Sanz, E., McKnight, G.S., Stuber, G.D., and Palmiter, R.D. (2022). Molecular and anatomical characterization of parabrachial neurons and their axonal projections. Elife 11: 5–7.
Peyron, R., Laurent, B., and García-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis (2000), Neurophysiol. Clin . 30: 263–288, https://doi.org/10.1016/s0987-7053(00)00227-6 .
doi: 10.1016/s0987-7053(00)00227-6
Pieretti, S., Di Giannuario, A., Di Giovannandrea, R., Marzoli, F., Piccaro, G., Minosi, P., and Aloisi, A.M. (2016). Gender differences in pain and its relief. Ann. Ist. Super Sanita. 52: 184–189, https://doi.org/10.4415/ANN_16_02_09 .
doi: 10.4415/ANN_16_02_09
Ploghaus, A., Tracey, I., Gati, J.S., Clare, S., Menon, R.S., Matthews, P.M., and Rawlins, J.N. (1999). Dissociating pain from its anticipation in the human brain. Science 284: 1979–1981, https://doi.org/10.1126/science.284.5422.1979 .
doi: 10.1126/science.284.5422.1979
Ploner, M., Schmitz, F., Freund, H.J., and Schnitzler, A. (2000). Differential organization of touch and pain in human primary somatosensory cortex. J. Neurophysiol. 83: 1770–1776, https://doi.org/10.1152/jn.2000.83.3.1770 .
doi: 10.1152/jn.2000.83.3.1770
Presto, P. and Neugebauer, V. (2022). Sex differences in CGRP regulation and function in the amygdala in a rat model of neuropathic pain. Front. Mol. Neurosci. 15: 928587, https://doi.org/10.3389/fnmol.2022.928587 .
doi: 10.3389/fnmol.2022.928587
Raja, S.N., Carr, D.B., Cohen, M., Finnerup, N.B., Flor, H., Gibson, S., Keefe, F.J., Mogil, J.S., Ringkamp, M., Sluka, K.A., et al.. (2020). The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161: 1976–1982, https://doi.org/10.1097/j.pain.0000000000001939 .
doi: 10.1097/j.pain.0000000000001939
Raver, C., Uddin, O., Ji, Y., Li, Y., Cramer, N., Jenne, C., Morales, M., Masri, R., and Keller, A. (2020). An amygdalo-parabrachial pathway regulates pain perception and chronic pain. J. Neurosci. 40: 3424–3442, https://doi.org/10.1523/jneurosci.0075-20.2020 .
doi: 10.1523/jneurosci.0075-20.2020
Ren, J., Xiang, J., Chen, Y., Li, F., Wu, T., and Shi, J. (2019). Abnormal functional connectivity under somatosensory stimulation in migraine: a multi-frequency magnetoencephalography study. J. Headache Pain 20: 3, https://doi.org/10.1186/s10194-019-0958-3 .
doi: 10.1186/s10194-019-0958-3
Roeder, Z., Chen, Q., Davis, S., Carlson, J.D., Tupone, D., and Heinricher, M.M. (2016). Parabrachial complex links pain transmission to descending pain modulation. Pain 157: 2697–2708, https://doi.org/10.1097/j.pain.0000000000000688 .
doi: 10.1097/j.pain.0000000000000688
Rosenfeld, M.G., Mermod, J.J., Amara, S.G., Swanson, L.W., Sawchenko, P.E., Rivier, J., Vale, W.W., and Evans, R.M. (1983). Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304: 129–135, https://doi.org/10.1038/304129a0 .
doi: 10.1038/304129a0
Saadé, N.E., Al Amin, H., Abdel Baki, S., Safieh-Garabedian, B., Atweh, S.F., and Jabbur, S.J. (2006). Transient attenuation of neuropathic manifestations in rats following lesion or reversible block of the lateral thalamic somatosensory nuclei. Exp. Neurol. 197: 157–166, https://doi.org/10.1016/j.expneurol.2005.09.005 .
doi: 10.1016/j.expneurol.2005.09.005
Sadler, K.E., McQuaid, N.A., Cox, A.C., Behun, M.N., Trouten, A.M., and Kolber, B.J. (2017). Divergent functions of the left and right central amygdala in visceral nociception. Pain 158: 747–759, https://doi.org/10.1097/j.pain.0000000000000830 .
doi: 10.1097/j.pain.0000000000000830
Sah, P., Faber, E.S., Lopez De Armentia, M., and Power, J. (2003). The amygdaloid complex: anatomy and physiology. Physiol. Rev. 83: 803–834, https://doi.org/10.1152/physrev.00002.2003 .
doi: 10.1152/physrev.00002.2003
Samineni, V.K., Grajales-Reyes, J.G., Copits, B.A., O’Brien, D.E., Trigg, S.L., Gomez, A.M., Bruchas, M.R., and Gereau, R.W.th. (2017). Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray. eNeuro 4: 4–9, https://doi.org/10.1523/eneuro.0129-16.2017 .
doi: 10.1523/eneuro.0129-16.2017
Santello, M. and Nevian, T. (2015). Dysfunction of cortical dendritic integration in neuropathic pain reversed by serotoninergic neuromodulation. Neuron 86: 233–246, https://doi.org/10.1016/j.neuron.2015.03.003 .
doi: 10.1016/j.neuron.2015.03.003
Saper, C.B. and Loewy, A.D. (2016). Commentary on: efferent connections of the parabrachial nucleus in the rat. C.B. Saper and A.D. Loewy, Brain Research 197: 291–317, 1980. Brain Res. 197: 1645: 15–7. https://doi.org/10.1016/0006-8993(80)91117-8 .
doi: 10.1016/0006-8993(80)91117-8
Schnitzler, A. and Ploner, M. (2000). Neurophysiology and functional neuroanatomy of pain perception. J. Clin. Neurophysiol. 17: 592–603, https://doi.org/10.1097/00004691-200011000-00005 .
doi: 10.1097/00004691-200011000-00005
Segerdahl, A.R., Mezue, M., Okell, T.W., Farrar, J.T., and Tracey, I. (2015). The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 18: 499–500, https://doi.org/10.1038/nn.3969 .
doi: 10.1038/nn.3969
Sellmeijer, J., Mathis, V., Hugel, S., Li, X.H., Song, Q., Chen, Q.Y., Barthas, F., Lutz, P.E., Karatas, M., Luthi, A., et al.. (2018). Hyperactivity of anterior cingulate cortex areas 24a/24b drives chronic pain-induced anxiodepressive-like consequences. J. Neurosci. 38: 3102–3115, https://doi.org/10.1523/jneurosci.3195-17.2018 .
doi: 10.1523/jneurosci.3195-17.2018
Seminowicz, D.A. and Moayedi, M. (2017). The dorsolateral prefrontal cortex in acute and chronic pain. J. Pain 18: 1027–1035, https://doi.org/10.1016/j.jpain.2017.03.008 .
doi: 10.1016/j.jpain.2017.03.008
Senn, V., Wolff, S.B., Herry, C., Grenier, F., Ehrlich, I., Gründemann, J., Fadok, J.P., Müller, C., Letzkus, J.J., and Lüthi, A. (2014). Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81: 428–437, https://doi.org/10.1016/j.neuron.2013.11.006 .
doi: 10.1016/j.neuron.2013.11.006
Shinohara, K., Watabe, A.M., Nagase, M., Okutsu, Y., Takahashi, Y., Kurihara, H., and Kato, F. (2017). Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity in the central amygdala. Eur. J. Neurosci. 46: 2149–2160, https://doi.org/10.1111/ejn.13662 .
doi: 10.1111/ejn.13662
Singer, T., Critchley, H.D., and Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends Cogn. Sci. 13: 334–340, https://doi.org/10.1016/j.tics.2009.05.001 .
doi: 10.1016/j.tics.2009.05.001
Singh, A., Patel, D., Li, A., Hu, L., Zhang, Q., Liu, Y., Guo, X., Robinson, E., Martinez, E., Doan, L., et al.. (2020). Mapping cortical integration of sensory and affective pain pathways. Curr. Biol. 30: 1703–1715, https://doi.org/10.1016/j.cub.2020.02.091 .
doi: 10.1016/j.cub.2020.02.091
Sun, L., Liu, R., Guo, F., Wen, M.Q., Ma, X.L., Li, K.Y., Sun, H., Xu, C.L., Li, Y.Y., Wu, M.Y., et al.. (2020a). Parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat. Commun. 11: 5974, https://doi.org/10.1038/s41467-020-19767-w .
doi: 10.1038/s41467-020-19767-w
Sun, Y., Wang, J., Liang, S.H., Ge, J., Lu, Y.C., Li, J.N., Chen, Y.B., Luo, D.S., Li, H., and Li, Y.Q. (2020b). Involvement of the ventrolateral periaqueductal gray matter-central medial thalamic nucleus-basolateral amygdala pathway in neuropathic pain regulation of rats. Front. Neuroanat. 14: 32, https://doi.org/10.3389/fnana.2020.00032 .
doi: 10.3389/fnana.2020.00032
Tan, L.L., Oswald, M.J., Heinl, C., Retana Romero, O.A., Kaushalya, S.K., Monyer, H., and Kuner, R. (2019). Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nat. Commun. 10: 983, https://doi.org/10.1038/s41467-019-08873-z .
doi: 10.1038/s41467-019-08873-z
Tang, J.S., Chiang, C.Y., Dostrovsky, J.O., Yao, D., and Sessle, B.J. (2021). Responses of neurons in rostral ventromedial medulla to nociceptive stimulation of craniofacial region and tail in rats. Brain Res. 1767: 147539, https://doi.org/10.1016/j.brainres.2021.147539 .
doi: 10.1016/j.brainres.2021.147539
Taylor, N.E., Pei, J., Zhang, J., Vlasov, K.Y., Davis, T., Taylor, E., Weng, F.J., Van Dort, C.J., Solt, K., and Brown, E.N. (2019). The role of glutamatergic and dopaminergic neurons in the periaqueductal gray/dorsal raphe: separating analgesia and anxiety. eNeuro 6: 4–10.
Thompson, J.M. and Neugebauer, V. (2017). Amygdala plasticity and pain. Pain Res. Manag . 2017: 8296501
Thompson, J.M. and Neugebauer, V. (2019). Cortico-limbic pain mechanisms. Neurosci. Lett. 702: 15–23, https://doi.org/10.1016/j.neulet.2018.11.037 .
doi: 10.1016/j.neulet.2018.11.037
Tian, Y. and Zalesky, A. (2018). Characterizing the functional connectivity diversity of the insula cortex: subregions, diversity curves and behavior. Neuroimage 183: 716–733, https://doi.org/10.1016/j.neuroimage.2018.08.055 .
doi: 10.1016/j.neuroimage.2018.08.055
Timmermann, L., Ploner, M., Haucke, K., Schmitz, F., Baltissen, R., and Schnitzler, A. (2001). Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J. Neurophysiol. 86: 1499–1503, https://doi.org/10.1152/jn.2001.86.3.1499 .
doi: 10.1152/jn.2001.86.3.1499
Tobaldini, G., Sardi, N.F., Guilhen, V.A., and Fischer, L. (2019). Pain inhibits pain: an ascending-descending pain modulation pathway linking mesolimbic and classical descending mechanisms. Mol. Neurobiol. 56: 1000–1013, https://doi.org/10.1007/s12035-018-1116-7 .
doi: 10.1007/s12035-018-1116-7
Todd, A.J. (2010). Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11: 823–836, https://doi.org/10.1038/nrn2947 .
doi: 10.1038/nrn2947
Tonsfeldt, K.J., Suchland, K.L., Beeson, K.A., Lowe, J.D., Li, M.H., and Ingram, S.L. (2016). Sex differences in GABAA signaling in the periaqueductal gray induced by persistent inflammation. J. Neurosci. 36: 1669–1681, https://doi.org/10.1523/jneurosci.1928-15.2016 .
doi: 10.1523/jneurosci.1928-15.2016
Tovote, P., Esposito, M.S., Botta, P., Chaudun, F., Fadok, J.P., Markovic, M., Wolff, S.B., Ramakrishnan, C., Fenno, L., Deisseroth, K., et al.. (2016). Midbrain circuits for defensive behaviour. Nature 534: 206–212, https://doi.org/10.1038/nature17996 .
doi: 10.1038/nature17996
Tracey, I. (2005). Nociceptive processing in the human brain. Curr. Opin. Neurobiol. 15: 478–487, https://doi.org/10.1016/j.conb.2005.06.010 .
doi: 10.1016/j.conb.2005.06.010
Uddin, O., Studlack, P., Akintola, T., Raver, C., Castro, A., Masri, R., and Keller, A. (2018). Amplified parabrachial nucleus activity in a rat model of trigeminal neuropathic pain. Neurobiol. Pain 3: 22–30, https://doi.org/10.1016/j.ynpai.2018.02.002 .
doi: 10.1016/j.ynpai.2018.02.002
Vachon-Presseau, E., Tétreault, P., Petre, B., Huang, L., Berger, S.E., Torbey, S., Baria, A.T., Mansour, A.R., Hashmi, J.A., Griffith, J.W., et al.. (2016). Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain 139: 1958–1970, https://doi.org/10.1093/brain/aww100 .
doi: 10.1093/brain/aww100
Veinante, P., Yalcin, I., and Barrot, M. (2013). The amygdala between sensation and affect: a role in pain. J. Mol. Psychiatry 1: 9, https://doi.org/10.1186/2049-9256-1-9 .
doi: 10.1186/2049-9256-1-9
Veréb, D., Kincses, B., Spisák, T., Schlitt, F., Szabó, N., Faragó, P., Kocsis, K., Bozsik, B., Tóth, E., Király, A., et al.. (2021). Resting-state functional heterogeneity of the right insula contributes to pain sensitivity. Sci. Rep. 11: 22945, https://doi.org/10.1038/s41598-021-02474-x .
doi: 10.1038/s41598-021-02474-x
Vertes, R.P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51: 32–58, https://doi.org/10.1002/syn.10279 .
doi: 10.1002/syn.10279
Vertes, R.P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142: 1–20, https://doi.org/10.1016/j.neuroscience.2006.06.027 .
doi: 10.1016/j.neuroscience.2006.06.027
Wang, G., Erpelding, N., and Davis, K.D. (2014). Sex differences in connectivity of the subgenual anterior cingulate cortex. Pain 155: 755–763, https://doi.org/10.1016/j.pain.2014.01.005 .
doi: 10.1016/j.pain.2014.01.005
Wang, G.Q., Cen, C., Li, C., Cao, S., Wang, N., Zhou, Z., Liu, X.M., Xu, Y., Tian, N.X., Zhang, Y., et al.. (2015). Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat. Commun. 6: 7660, https://doi.org/10.1038/ncomms8660 .
doi: 10.1038/ncomms8660
Wang, N., Zhang, Y.H., Wang, J.Y., and Luo, F. (2021). Current understanding of the involvement of the insular cortex in neuropathic pain: a narrative review. Int. J. Mol. Sci. 22: 2648, https://doi.org/10.3390/ijms22052648 .
doi: 10.3390/ijms22052648
Wang, W., Tang, S., Li, C., Chen, J., Li, H., Su, Y., and Ning, B. (2019). Specific brain morphometric changes in spinal cord injury: a voxel-based meta-analysis of white and gray matter volume. J. Neurotrauma 36: 2348–2357, https://doi.org/10.1089/neu.2018.6205 .
doi: 10.1089/neu.2018.6205
Wang, Z., Huang, S., Yu, X., Li, L., Yang, M., Liang, S., Liu, W., and Tao, J. (2020). Altered thalamic neurotransmitters metabolism and functional connectivity during the development of chronic constriction injury induced neuropathic pain. Biol. Res. 53: 36, https://doi.org/10.1186/s40659-020-00303-5 .
doi: 10.1186/s40659-020-00303-5
Wiech, K. and Tracey, I. (2009). The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47: 987–994, https://doi.org/10.1016/j.neuroimage.2009.05.059 .
doi: 10.1016/j.neuroimage.2009.05.059
Willis, W.D. and Westlund, K.N. (1997). Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14: 2–31, https://doi.org/10.1097/00004691-199701000-00002 .
doi: 10.1097/00004691-199701000-00002
Wilson, T.D., Valdivia, S., Khan, A., Ahn, H.S., Adke, A.P., Martinez Gonzalez, S., Sugimura, Y.K., and Carrasquillo, Y. (2019). Dual and opposing functions of the central amygdala in the modulation of pain. Cell Rep. 29: 332–346, https://doi.org/10.1016/j.celrep.2019.09.011 .
doi: 10.1016/j.celrep.2019.09.011
Wong, C.E., Hu, C.Y., Lee, P.H., Huang, C.C., Huang, H.W., Huang, C.Y., Lo, H.T., Liu, W., and Lee, J.S. (2022). Sciatic nerve stimulation alleviates acute neuropathic pain via modulation of neuroinflammation and descending pain inhibition in a rodent model. J. Neuroinflammation 19: 153, https://doi.org/10.1186/s12974-022-02513-y .
doi: 10.1186/s12974-022-02513-y
Woon, E.P., Sequeira, M.K., Barbee, B.R., and Gourley, S.L. (2020). Involvement of the rodent prelimbic and medial orbitofrontal cortices in goal-directed action: a brief review. J. Neurosci. Res. 98: 1020–1030, https://doi.org/10.1002/jnr.24567 .
doi: 10.1002/jnr.24567
Worthen, S.F., Hobson, A.R., Hall, S.D., Aziz, Q., and Furlong, P.L. (2011). Primary and secondary somatosensory cortex responses to anticipation and pain: a magnetoencephalography study. Eur. J. Neurosci. 33: 946–959, https://doi.org/10.1111/j.1460-9568.2010.07575.x .
doi: 10.1111/j.1460-9568.2010.07575.x
Yalcin, I., Barthas, F., and Barrot, M. (2014). Emotional consequences of neuropathic pain: insight from preclinical studies. Neurosci. Biobehav. Rev. 47: 154–164, https://doi.org/10.1016/j.neubiorev.2014.08.002 .
doi: 10.1016/j.neubiorev.2014.08.002
Yin, J.B., Liang, S.H., Li, F., Zhao, W.J., Bai, Y., Sun, Y., Wu, Z.Y., Ding, T., Sun, Y., Liu, H.X., et al.. (2020). dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors. J. Clin. Invest. 130: 6555–6570, https://doi.org/10.1172/jci127607 .
doi: 10.1172/jci127607
Yu, W., Pati, D., Pina, M.M., Schmidt, K.T., Boyt, K.M., Hunker, A.C., Zweifel, L.S., McElligott, Z.A., and Kash, T.L. (2021). Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors. Neuron 109: 1365–1380, https://doi.org/10.1016/j.neuron.2021.03.001 .
doi: 10.1016/j.neuron.2021.03.001
Yue, L., Ma, L.Y., Cui, S., Liu, F.Y., Yi, M., and Wan, Y. (2017). Brain-derived neurotrophic factor in the infralimbic cortex alleviates inflammatory pain. Neurosci. Lett. 655: 7–13, https://doi.org/10.1016/j.neulet.2017.06.028 .
doi: 10.1016/j.neulet.2017.06.028
Zhang, C., Chen, R.X., Zhang, Y., Wang, J., Liu, F.Y., Cai, J., Liao, F.F., Xu, F.Q., Yi, M., and Wan, Y. (2017). Reduced GABAergic transmission in the ventrobasal thalamus contributes to thermal hyperalgesia in chronic inflammatory pain. Sci. Rep. 7: 41439, https://doi.org/10.1038/srep41439 .
doi: 10.1038/srep41439
Zhang, M.M., Geng, A.Q., Chen, K., Wang, J., Wang, P., Qiu, X.T., Gu, J.X., Fan, H.W., Zhu, D.Y., Yang, S.M., et al.. (2022). Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron 110: 1993–2008, https://doi.org/10.1016/j.neuron.2022.03.030 .
doi: 10.1016/j.neuron.2022.03.030
Zhang, Z., Gadotti, V.M., Chen, L., Souza, I.A., Stemkowski, P.L., and Zamponi, G.W. (2015). Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Rep. 12: 752–759, https://doi.org/10.1016/j.celrep.2015.07.001 .
doi: 10.1016/j.celrep.2015.07.001
Zhou, H., Zhang, Q., Martinez, E., Dale, J., Hu, S., Zhang, E., Liu, K., Huang, D., Yang, G., Chen, Z., et al.. (2018). Ketamine reduces aversion in rodent pain models by suppressing hyperactivity of the anterior cingulate cortex. Nat. Commun. 9: 3751, https://doi.org/10.1038/s41467-018-06295-x .
doi: 10.1038/s41467-018-06295-x
Zhu, H., Xiang, H.C., Li, H.P., Lin, L.X., Hu, X.F., Zhang, H., Meng, W.Y., Liu, L., Chen, C., Shu, Y., et al.. (2019). Inhibition of GABAergic neurons and excitation of glutamatergic neurons in the ventrolateral periaqueductal gray participate in electroacupuncture analgesia mediated by cannabinoid receptor. Front. Neurosci. 13: 484, https://doi.org/10.3389/fnins.2019.00484 .
doi: 10.3389/fnins.2019.00484
Zhu, X., Xu, Y., Shen, Z., Zhang, H., Xiao, S., Zhu, Y., Wu, M., Chen, Y., Wu, Z., Xu, Y., et al.. (2021). Rostral anterior cingulate cortex-ventrolateral periaqueductal gray circuit underlies electroacupuncture to alleviate hyperalgesia but not anxiety-like behaviors in mice with spared nerve injury. Front. Neurosci. 15: 757628, https://doi.org/10.3389/fnins.2021.757628 .
doi: 10.3389/fnins.2021.757628
Zhu, X., Zhou, W., Jin, Y., Tang, H., Cao, P., Mao, Y., Xie, W., Zhang, X., Zhao, F., Luo, M.H., et al.. (2019). A central amygdala input to the parafascicular nucleus controls comorbid pain in depression. Cell Rep. 29: 3847–3858, https://doi.org/10.1016/j.celrep.2019.11.003 .
doi: 10.1016/j.celrep.2019.11.003
Zhu, Y.B., Wang, Y., Hua, X.X., Xu, L., Liu, M.Z., Zhang, R., Liu, P.F., Li, J.B., Zhang, L., and Mu, D. (2022). PBN-PVT projections modulate negative affective states in mice. Elife 11: 6–9, https://doi.org/10.7554/elife.68372 .
doi: 10.7554/elife.68372
Zhuo, M. and Gebhart, G.F. (1997). Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J. Neurophysiol. 78: 746–758, https://doi.org/10.1152/jn.1997.78.2.746 .
doi: 10.1152/jn.1997.78.2.746

Auteurs

Dandan Yao (D)

Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Yeru Chen (Y)

Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Gang Chen (G)

Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH