Excitation-Dependent High-Lying Excitonic Exchange
2D material
MoS2
WSe2
band-nesting
energy transfer
heterostructure
Journal
Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070
Informations de publication
Date de publication:
28 Jun 2023
28 Jun 2023
Historique:
medline:
8
6
2023
pubmed:
8
6
2023
entrez:
8
6
2023
Statut:
ppublish
Résumé
High light absorption (∼15%) and strong photoluminescence (PL) emission in monolayer (1L) transition metal dichalcogenides (TMDs) make them ideal candidates for optoelectronic device applications. Competing interlayer charge transfer (CT) and energy transfer (ET) processes control the photocarrier relaxation pathways in TMD heterostructures (HSs). In TMDs, long-distance ET can survive up to several tens of nm, unlike the CT process. Our experiment shows that an efficient ET occurs from the 1Ls WSe
Identifiants
pubmed: 37289519
doi: 10.1021/acs.nanolett.3c01127
pmc: PMC10311602
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5617-5624Références
Sci Adv. 2021 Apr 21;7(17):
pubmed: 33883143
Nat Commun. 2015 Jul 02;6:7636
pubmed: 26134143
Science. 2020 Dec 4;370(6521):1199-1204
pubmed: 33273099
ACS Nano. 2013 Jul 23;7(7):5660-5
pubmed: 23834654
Phys Chem Chem Phys. 2022 Feb 2;24(5):3059-3065
pubmed: 35040461
Nat Commun. 2016 Nov 07;7:13279
pubmed: 27819288
Nat Mater. 2013 Mar;12(3):207-11
pubmed: 23202371
ACS Nano. 2022 Mar 22;16(3):3861-3869
pubmed: 35262327
Phys Rev Lett. 2013 Jul 12;111(2):026601
pubmed: 23889426
ACS Nano. 2020 Oct 27;14(10):13470-13477
pubmed: 32966063
Phys Rev Lett. 2012 May 11;108(19):196802
pubmed: 23003071
Nano Lett. 2016 Apr 13;16(4):2485-91
pubmed: 26974978
Nano Lett. 2012 Mar 14;12(3):1707-10
pubmed: 22380756
Nano Lett. 2016 Jul 13;16(7):4087-93
pubmed: 27324060
Small. 2017 Sep;13(35):
pubmed: 28464480
ACS Nano. 2020 Sep 22;14(9):11482-11489
pubmed: 32790345
Nat Commun. 2017 Oct 13;8(1):929
pubmed: 29030548
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2119726119
pubmed: 35380900
Phys Rev Lett. 2019 Aug 30;123(9):096803
pubmed: 31524465
Sci Rep. 2019 Feb 13;9(1):1989
pubmed: 30760791
Nano Lett. 2020 Jun 10;20(6):4242-4248
pubmed: 32436711
J Biomed Opt. 2012 Jan;17(1):011002
pubmed: 22352636
Science. 2013 Jun 14;340(6138):1311-4
pubmed: 23641062
ACS Nano. 2019 Feb 26;13(2):2341-2348
pubmed: 30715845
Phys Rev Lett. 2018 Jan 19;120(3):037402
pubmed: 29400519
Nat Commun. 2018 Sep 13;9(1):3719
pubmed: 30213927
Phys Rev Lett. 2015 Mar 20;114(11):115901
pubmed: 25839292
Nat Commun. 2013;4:1474
pubmed: 23403575
Nano Lett. 2013;13(12):5944-8
pubmed: 24215567
Phys Rev Lett. 2013 Sep 6;111(10):106801
pubmed: 25166690
Nat Commun. 2020 Aug 12;11(1):4037
pubmed: 32788704
Phys Chem Chem Phys. 2017 Jul 21;19(27):17877-17882
pubmed: 28660931
Nat Commun. 2014 Jul 29;5:4543
pubmed: 25072556
ACS Nano. 2013 Feb 26;7(2):1072-80
pubmed: 23273148
Nano Lett. 2010 Apr 14;10(4):1271-5
pubmed: 20229981
Phys Rev Lett. 2010 Sep 24;105(13):136805
pubmed: 21230799
Nano Lett. 2015 Feb 11;15(2):1252-8
pubmed: 25607231
Nano Lett. 2021 Feb 10;21(3):1193-1204
pubmed: 33492957